Tag Archives: supersymmetry

When It Rains It Amplitudes

The last few weeks have seen a rain of amplitudes papers on arXiv, including quite a few interesting ones.

rainydays

As well as a fair amount of actual rain in Copenhagen

Over the last year Nima Arkani-Hamed has been talking up four or five really interesting results, and not actually publishing any of them. This has understandably frustrated pretty much everybody. In the last week he published two of them, Cosmological Polytopes and the Wavefunction of the Universe with Paolo Benincasa and Alexander Postnikov and Scattering Amplitudes For All Masses and Spins with Tzu-Chen Huang and Yu-tin Huang. So while I’ll have to wait on the others (I’m particularly looking forward to seeing what he’s been working on with Ellis Yuan) this can at least tide me over.

Cosmological Polytopes and the Wavefunction of the Universe is Nima & co.’s attempt to get a geometrical picture for cosmological correlators, analogous to the Ampituhedron. Cosmological correlators ask questions about the overall behavior of the visible universe: how likely is one clump of matter to be some distance from another? What sorts of patterns might we see in the Cosmic Microwave Background? This is the sort of thing that can be used for “cosmological collider physics”, an idea I mention briefly here.

Paolo Benincasa was visiting Perimeter near the end of my time there, so I got a few chances to chat with him about this. One thing he mentioned, but that didn’t register fully at the time, was Postnikov’s involvement. I had expected that even if Nima and Paolo found something interesting that it wouldn’t lead to particularly deep mathematics. Unlike the N=4 super Yang-Mills theory that generates the Amplituhedron, the theories involved in these cosmological correlators aren’t particularly unique, they’re just a particular class of models cosmologists use that happen to work well with Nima’s methods. Given that, it’s really surprising that they found something mathematically interesting enough to interest Postnikov, a mathematician who was involved in the early days of the Amplituhedron’s predecessor, the Positive Grassmannian. If there’s something that mathematically worthwhile in such a seemingly arbitrary theory then perhaps some of the beauty of the Amplithedron are much more general than I had thought.

Scattering Amplitudes For All Masses and Spins is on some level a byproduct of Nima and Yu-tin’s investigations of whether string theory is unique. Still, it’s a useful byproduct. Many of the tricks we use in scattering amplitudes are at their best for theories with massless particles. Once the particles have masses our notation gets a lot messier, and we often have to rely on older methods. What Nima, Yu-tin, and Tzu-Chen have done here is to build a notation similar to what we use for massless particle, but for massive ones.

The advantage of doing this isn’t just clean-looking papers: using this notation makes it a lot easier to see what kinds of theories make sense. There are a variety of old theorems that restrict what sorts of theories you can write down: photons can’t interact directly with each other, there can only be one “gravitational force”, particles with spins greater than two shouldn’t be massless, etc. The original theorems were often fairly involved, but for massless particles there were usually nice ways to prove them in modern amplitudes notation. Yu-tin in particular has a lot of experience finding these kinds of proofs. What the new notation does is make these nice simple proofs possible for massive particles as well. For example, you can try to use the new notation to write down an interaction between a massive particle with spin greater than two and gravity, and what you find is that any expression you write breaks down: it works fine at low energies, but once you’re looking at particles with energies much higher than their mass you start predicting probabilities greater than one. This suggests that particles with higher spins shouldn’t be “fundamental”, they should be explained in terms of other particles at higher energies. The only way around this turns out to be an infinite series of particles to cancel problems from the previous ones, the sort of structure that higher vibrations have in string theory. I often don’t appreciate papers that others claim are a pleasure to read, but this one really was a pleasure to read: there’s something viscerally satisfying about seeing so many important constraints manifest so cleanly.

I’ve talked before about the difference between planar and non-planar theories. Planar theories end up being simpler, and in the case of N=4 super Yang-Mills this results in powerful symmetries that let us do much more complicated calculations. Non-planar theories are more complicated, but necessary for understanding gravity. Dual Conformal Symmetry, Integration-by-Parts Reduction, Differential Equations and the Nonplanar Sector, a new paper by Zvi Bern, Michael Enciso, Harald Ita, and Mao Zeng, works on bridging the gap between these two worlds.

Most of the paper is concerned with using some of the symmetries of N=4 super Yang-Mills in other, more realistic (but still planar) theories. The idea is that even if those symmetries don’t hold one can still use techniques that respect those symmetries, and those techniques can often be a lot cleaner than techniques that don’t. This is probably the most practically useful part of the paper, but the part I was most curious about is in the last few sections, where they discuss non-planar theories. For a while now I’ve been interested in ways to treat a non-planar theory as if it were planar, to try to leverage the powerful symmetries we have in planar N=4 super Yang-Mills elsewhere. Their trick is surprisingly simple: they just cut the diagram open! Oddly enough, they really do end up with similar symmetries using this method. I still need to read this in more detail to understand its limitations, since deep down it feels like something this simple couldn’t possibly work. Still, if anything like the symmetries of planar N=4 holds in the non-planar case there’s a lot we could do with it.

There are a bunch of other interesting recent papers that I haven’t had time to read. Some look like they might relate to weird properties of N=4 super Yang-Mills, others say interesting things about the interconnected web of theories tied together by their behavior when a particle becomes “soft”. Another presents a method for dealing with elliptic functions, one of the main obstructions to applying my hexagon function technique to more situations. And of course I shouldn’t fail to mention a paper by my colleague Carlos Cardona, applying amplitudes techniques to AdS/CFT. Overall, a lot of interesting stuff in a short span of time. I should probably get back to reading it!

Advertisements

An Amplitudes Flurry

Now that we’re finally done with flurries of snow here in Canada, in the last week arXiv has been hit with a flurry of amplitudes papers.

kitchener-construction

We’re also seeing a flurry of construction, but that’s less welcome.

Andrea Guerrieri, Yu-tin Huang, Zhizhong Li, and Congkao Wen have a paper on what are known as soft theorems. Most famously studied by Weinberg, soft theorems are proofs about what happens when a particle in an amplitude becomes “soft”, or when its momentum becomes very small. Recently, these theorems have gained renewed interest, as new amplitudes techniques have allowed researchers to go beyond Weinberg’s initial results (to “sub-leading” order) in a variety of theories.

Guerrieri, Huang, Li, and Wen’s contribution to the topic looks like it clarifies things quite a bit. Previously, most of the papers I’d seen about this had been isolated examples. This paper ties the various cases together in a very clean way, and does important work in making some older observations more rigorous.

 

Vittorio Del Duca, Claude Duhr, Robin Marzucca, and Bram Verbeek wrote about transcendental weight in something known as the multi-Regge limit. I’ve talked about transcendental weight before: loosely, it’s counting the power of pi that shows up in formulas. The multi-Regge limit concerns amplitudes with very high energies, in which we have a much better understanding of how the amplitudes should behave. I’ve used this limit before, to calculate amplitudes in N=4 super Yang-Mills.

One slogan I love to repeat is that N=4 super Yang-Mills isn’t just a toy model, it’s the most transcendental part of QCD. I’m usually fairly vague about this, because it’s not always true: while often a calculation in N=4 super Yang-Mills will give the part of the same calculation in QCD with the highest power of pi, this isn’t always the case, and it’s hard to propose a systematic principle for when it should happen. Del Duca, Duhr, Marzucca, and Verbeek’s work is a big step in that direction. While some descriptions of the multi-Regge limit obey this property, others don’t, and in looking at the ones that don’t the authors gain a better understanding of what sorts of theories only have a “maximally transcendental part”. What they find is that even when such theories aren’t restricted to N=4 super Yang-Mills, they have shared properties, like supersymmetry and conformal symmetry. Somehow these properties are tied to the transcendentality of functions in the amplitude, in a way that’s still not fully understood.

 

My colleagues at Perimeter released two papers over the last week: one, by Freddy Cachazo and Alfredo Guevara, uses amplitudes techniques to look at classical gravity, while the other, by Sebastian Mizera and Guojun Zhang, looks at one of the “pieces” inside string theory amplitudes.

I worked with Freddy and Alfredo on an early version of their result, back at the PSI Winter School. While I was off lazing about in Santa Barbara, they were hard at work trying to understand how the quantum-looking “loops” one can use to make predictions for potential energy in classical gravity are secretly classical. What they ended up finding was a trick to figure out whether a given amplitude was going to have a classical part or be purely quantum. So far, the trick works for amplitudes with one loop, and a few special cases at higher loops. It’s still not clear if it works for the general case, and there’s a lot of work still to do to understand what it means, but it definitely seems like an idea with potential. (Pun mostly not intended.)

I’ve talked before about “Z theory”, the weird thing you get when you isolate the “stringy” part of string theory amplitudes. What Sebastian and Guojun have carved out isn’t quite the same piece, but it’s related. I’m still not sure of the significance of cutting string amplitudes up in this way, I’ll have to read the paper more thoroughly (or chat with the authors) to find out.

Pop Goes the Universe and Other Cosmic Microwave Background Games

(With apologies to whoever came up with this “book”.)

Back in February, Ijjas, Steinhardt, and Loeb wrote an article for Scientific American titled “Pop Goes the Universe” criticizing cosmic inflation, the proposal that the universe underwent a period of rapid expansion early in its life, smoothing it out to achieve the (mostly) uniform universe we see today. Recently, Scientific American published a response by Guth, Kaiser, Linde, Nomura, and 29 co-signers. This was followed by a counterresponse, which is the usual number of steps for this sort of thing before it dissipates harmlessly into the blogosphere.

In general, string theory, supersymmetry, and inflation tend to be criticized in very similar ways. Each gets accused of being unverifiable, able to be tuned to match any possible experimental result. Each has been claimed to be unfairly dominant, its position as “default answer” more due to the bandwagon effect than the idea’s merits. All three tend to get discussed in association with the multiverse, and blamed for dooming physics as a result. And all are frequently defended with one refrain: “If you have a better idea, what is it?”

It’s probably tempting (on both sides) to view this as just another example of that argument. In reality, though, string theory, supersymmetry, and inflation are all in very different situations. The details matter. And I worry that in this case both sides are too ready to assume the other is just making the “standard argument”, and ended up talking past each other.

When people say that string theory makes no predictions, they’re correct in a sense, but off topic: the majority of string theorists aren’t making the sort of claims that require successful predictions. When people say that inflation makes no predictions, if you assume they mean the same thing that people mean when they accuse string theory of making no predictions, then they’re flat-out wrong. Unlike string theorists, most people who work on inflation care a lot about experiment. They write papers filled with predictions, consequences for this or that model if this or that telescope sees something in the near future.

I don’t think Ijjas, Steinhardt, and Loeb were making that kind of argument.

When people say that supersymmetry makes no predictions, there’s some confusion of scope. (Low-energy) supersymmetry isn’t one specific proposal that needs defending on its own. It’s a class of different models, each with its own predictions. Given a specific proposal, one can see if it’s been ruled out by experiment, and predict what future experiments might say about it. Ruling out one model doesn’t rule out supersymmetry as a whole, but it doesn’t need to, because any given researcher isn’t arguing for supersymmetry as a whole: they’re arguing for their particular setup. The right “scope” is between specific supersymmetric models and specific non-supersymmetric models, not both as general principles.

Guth, Kaiser, Linde, and Nomura’s response follows similar lines in defending inflation. They point out that the wide variety of models are subject to being ruled out in the face of observation, and compare to the construction of the Standard Model in particle physics, with many possible parameters under the overall framework of Quantum Field Theory.

Ijjas, Steinhardt, and Loeb’s article certainly looked like it was making this sort of mistake. But as they clarify in the FAQ of their counter-response, they’ve got a more serious objection. They’re arguing that, unlike in the case of supersymmetry or the Standard Model, specific inflation models do not lead to specific predictions. They’re arguing that, because inflation typically leads to a multiverse, any specific model will in fact lead to a wide variety of possible observations. In effect, they’re arguing that the multitude of people busily making predictions based on inflationary models are missing a step in their calculations, underestimating their errors by a huge margin.

This is where I really regret that these arguments usually end after three steps (article, response, counter-response). Here Ijjas, Steinhardt, and Loeb are making what is essentially a technical claim, one that Guth, Kaiser, Linde, and Nomura could presumably respond to with a technical response, after which the rest of us would actually learn something. As-is, I certainly don’t have the background in inflation to know whether or not this point makes sense, and I’d love to hear from someone who does.

One aspect of this exchange that baffled me was the “accusation” that Ijjas, Steinhardt, and Loeb were just promoting their own work on bouncing cosmologies. (I put “accusation” in quotes because while Ijjas, Steinhardt, and Loeb seem to treat it as if it were an accusation, Guth, Kaiser, Linde, and Nomura don’t obviously mean it as one.)

“Bouncing cosmology” is Ijjas, Steinhardt, and Loeb’s answer to the standard “If you have a better idea, what is it?” response. It wasn’t the focus of their article, but while they seem to think this speaks well of them (hence their treatment of “promoting their own work” as if it were an accusation), I don’t. I read a lot of Scientific American growing up, and the best articles focused on explaining a positive vision: some cool new idea, mainstream or not, that could capture the public’s interest. That kind of article could still have included criticism of inflation, you’d want it in there to justify the use of a bouncing cosmology. But by going beyond that, it would have avoided falling into the standard back and forth that these arguments tend to, and maybe we would have actually learned from the exchange.

The Road to Seven-Loop Supergravity

There’s an obvious way to put together a theory of quantum gravity. And it doesn’t work.

Do the same thing you would with any other theory, and you get infinity. You get repeated infinities, an infinity of infinities. And while you could fix one or two infinities, fixing an infinite number requires giving up an infinity of possible predictions, so in the end your theory predicts nothing.

String theory fixes this with its own infinity, the infinite number of ways a string can vibrate. Because this infinity is organized and structured and well-understood, you’re left with a theory that is still at least capable of making predictions.

(Note that this is an independent question from whether string theory can make predictions for experiments in the real world. This is a much more “in-principle” statement: if we knew everything we might want to about physics, all the fields and particles and shapes of the extra dimensions, we could use string theory to make predictions. Even if we knew all of that, we still couldn’t make predictions from naive quantum gravity.)

Are there ways to fix the problem that don’t involve an infinity of vibrations? Or at least, to fix part of the problem?

That’s what Zvi Bern, John Joseph Carrasco, Henrik Johansson, and a growing cast of collaborators have been trying to find out.

They’re investigating N=8 supergravity, a theory that takes gravity and adds on a host of related particles. It’s one of the easiest theories to get from string theory, by curling up extra dimensions in a particularly simple way and ignoring higher-energy vibrations.

Bern, along with Lance Dixon and David Kosower, invented the generalized unitarity technique I talked about last week. Along with Carrasco and Johansson, he figured out another important trick: the idea that you can do calculations in gravity by squaring the appropriate part of calculations in Yang-Mills theory. For N=8 supergravity, the theory you need to square is my favorite theory, N=4 super Yang-Mills.

Using this, they started pushing forward, calculating approximations to greater and greater precision (more and more loops).

What they found, at each step, was that N=8 supergravity behaved better than expected. In fact, it behaved like N=4 super Yang-Mills.

N=4 super Yang-Mills is special, because in four dimensions (three space and one time, the dimensions we’re used to in daily life) there are no infinities to fix. In a world with more dimensions, though, you start getting infinities, and with more and more loops you need fewer and fewer dimensions to see them.

N=8 supergravity, unexpectedly, was giving infinities in the same dimensions that N=4 super Yang-Mills did (and no earlier). If it kept doing that, you might guess that it also had no infinities in four dimensions. You might wonder if, at least loop by loop, N=8 supergravity could be a way to fix quantum gravity without string theory.

Of course, you’d only really know if you could check in four dimensions.

If you want to check in four dimensions, though, you run into a problem. The fewer dimensions you’re looking at, the more loops you need before N=8 supergravity could possibly give infinity. In four dimensions, you need a forbidding seven loops of precision.

(To compare, the highest precision of things we’ve actually tested in the real world is four loops.)

Still, Bern, Carrasco, and Johansson were up to the challenge. Along with Lance Dixon, David Kosower, and Radu Roiban, they looked at three loops, calculating an interaction of four gravitons, and the pattern continued. Four loops, and it was still going strong.

At around this time, I had just started grad school. My first project was a cumbersome numerical calculation. To keep me motivated, my advisor mentioned that the work I was doing would be good preparation for a much grander project: the calculation of whether the four-graviton interaction in N=8 supergravity diverges at seven loops. All I’d have to do was wait for Bern and collaborators to get there.

I named this blog “4 gravitons and a grad student”, and hoped I would get a chance to contribute.

And then something unexpected happened. They got stuck at five loops.

The method they were using, generalized unitarity, is an ansatz-based method. You start with a guess, then refine it. As such, the method is ultimately only as good as your guess.

Their guesses, in general, were pretty good. The trick they were using, squaring N=4 to get N=8, requires a certain type of guess: one in which the pieces they square have similar relationships to the different types of charge in Yang-Mills theory. There’s still an infinite number of guesses that can obey this, so they applied more restrictions, expectations based on other calculations, to get something more manageable. This worked at three loops, and worked (with a little extra thought) at four loops.

But at five loops they were stuck. They couldn’t find anything, with their restrictions, that gave the correct answer when “cut up” by generalized unitarity. And while they could drop some restrictions, if they dropped too many they’d end up with far too general a guess, something that could take months of computer time to solve.

So they stopped.

They did quite a bit of interesting work in the meantime. They found more theories they could square to get gravity theories, of more and more unusual types. They calculated infinities in other theories, and found surprises there too, other cases where infinities didn’t show up when they were “supposed” to. But for some time, the N=8 supergravity calculation was stalled.

And in the meantime, I went off in another direction, which long-time readers of this blog already know about.

Recently, though, they’ve broken the stall.

What they realized is that the condition on their guess, that the parts they square be related like Yang-Mills charges, wasn’t entirely necessary. Instead, they could start with a “bad” guess, and modify it, using the failure of those relations to fill in the missing pieces.

It looks like this is going to work.

We’re all at an amplitudes program right now in Santa Barbara. Walking through the halls of the KITP, I overhear conversations about five loops. They’re paring things down, honing their code, getting rid of the last few bugs, and checking their results.

They’re almost there, and it’s exciting. It looks like finally things are moving again, like the train to seven loops has once again left the station.

Increasingly, they’re beginning to understand the absent infinities, to see that they really are due to something unexpected and new.

N=8 supergravity isn’t going to be the next theory of everything. (For one, you can’t get chiral fermions out of it.) But if it really has no infinities at any loop, that tells us something about what a theory of quantum gravity is allowed to be, about the minimum necessary to at least make sense on a loop-by-loop level.

And that, I think, is worth being excited about.

Poll Results, and What’s Next

I’ll leave last week’s poll up a while longer as more votes trickle in, but the overall pattern (beyond “Zipflike“) is pretty clear.

From pretty early on, most requests were for more explanations of QFT, gravity, and string theory concepts, with amplitudes content a clear second. This is something I can definitely do more of: I haven’t had much inspiration for interesting pieces of this sort recently, but it’s something I can ramp up in future.

I suspect that many of the people voting for more QFT and more amplitudes content were also interested in something else, though: more physics news. Xezlec mentioned that with Résonaances and Of Particular Significance quiet, there’s an open niche for vaguely reasonable people blogging about physics.

The truth is, I didn’t think of adding a “more physics news” option to the poll. I’m not a great source of news: not being a phenomenologist, I don’t keep up with the latest experimental results, and since my sub-field is small and insular I’m not always aware of the latest thing Witten or Maldacena is working on.

For an example of the former: recently, various LHC teams presented results at the Moriond and Aspen conferences, with no new evidence of supersymmetry in the data they’ve gathered thus far. This triggered concessions on several bets about SUSY (including an amusingly awkward conversation about how to pay one of them).

And I only know about that because other bloggers talked about it.

So I’m not going to be a reliable source of physics news.

With that said, knowing there’s a sizable number of people interested in this kind of thing is helpful. I’ve definitely had times when I saw something I found interesting, but wasn’t sure if my audience would care. (For example, recently there’s been some substantial progress on the problem that gave this blog its name.) Now that I know some of you are interested, I’ll err on the side of posting about these kinds of things.

“What’s it like to be a physicist” and science popularization were both consistently third and fourth in the poll, switching back and forth as more votes came in. This tells me that while many of you want more technical content, there are still people interested in pieces aimed to a broader audience, so I won’t abandon those.

The other topics were fairly close together, with the more “news-y” ones (astrophysics/cosmology and criticism of bad science coverage) beating the less “news-y” ones. This also supports my guess that people were looking for a “more physics news” option. A few people even voted for “more arguments”, which was really more of a joke topic: getting into arguments with other bloggers tends to bring in readers, but it’s not something I ever plan to do intentionally.

So, what’s next? I’ll explain more quantum field theory, talk more about interesting progress in amplitudes, and mention news when I come across it, trusting you guys to find it interesting. I’ll keep up with the low-level stuff, and with trying to humanize physics, to get the public to understand what being a physicist is all about. And I’ll think about some of the specific suggestions you gave: I’m always looking for good post ideas.

The Parable of the Entanglers and the Bootstrappers

There’s been some buzz around a recent Quanta article by K. C. Cole, The Strange Second Life of String Theory. I found it a bit simplistic of a take on the topic, so I thought I’d offer a different one.

String theory has been called the particle physicist’s approach to quantum gravity. Other approaches use the discovery of general relativity as a model: they’re looking for a big conceptual break from older theories. String theory, in contrast, starts out with a technical problem (naive quantum gravity calculations that give infinity) proposes physical objects that could solve the problem (strings, branes), and figures out which theories of these objects are consistent with existing data (originally the five superstring theories, now all understood as parts of M theory).

That approach worked. It didn’t work all the way, because regardless of whether there are indirect tests that can shed light on quantum gravity, particle physics-style tests are far beyond our capabilities. But in some sense, it went as far as it can: we’ve got a potential solution to the problem, and (apart from some controversy about the cosmological constant) it looks consistent with observations. Until actual evidence surfaces, that’s the end of that particular story.

When people talk about the failure of string theory, they’re usually talking about its aspirations as a “theory of everything”. String theory requires the world to have eleven dimensions, with seven curled up small enough that we can’t observe them. Different arrangements of those dimensions lead to different four-dimensional particles. For a time, it was thought that there would be only a few possible arrangements: few enough that people could find the one that describes the world and use it to predict undiscovered particles.

That particular dream didn’t work out. Instead, it became apparent that there were a truly vast number of different arrangements of dimensions, with no unique prediction likely to surface.

By the time I took my first string theory course in grad school, all of this was well established. I was entering a field shaped by these two facts: string theory’s success as a particle-physics style solution to quantum gravity, and its failure as a uniquely predictive theory of everything.

The quirky thing about science: sociologically, success and failure look pretty similar. Either way, it’s time to find a new project.

A colleague of mine recently said that we’re all either entanglers or bootstrappers. It was a joke, based on two massive grants from the Simons Foundation. But it’s also a good way to summarize two different ways string theory has moved on, from its success and from its failure.

The entanglers start from string theory’s success and say, what’s next?

As it turns out, a particle-physics style understanding of quantum gravity doesn’t tell you everything you need to know. Some of the big conceptual questions the more general relativity-esque approaches were interested in are still worth asking. Luckily, string theory provides tools to answer them.

Many of those answers come from AdS/CFT, the discovery that string theory in a particular warped space-time is dual (secretly the same theory) to a more particle-physics style theory on the edge of that space-time. With that discovery, people could start understanding properties of gravity in terms of properties of particle-physics style theories. They could use concepts like information, complexity, and quantum entanglement (hence “entanglers”) to ask deeper questions about the structure of space-time and the nature of black holes.

The bootstrappers, meanwhile, start from string theory’s failure and ask, what can we do with it?

Twisting up the dimensions of string theory yields a vast number of different arrangements of particles. Rather than viewing this as a problem, why not draw on it as a resource?

“Bootstrappers” explore this space of particle-physics style theories, using ones with interesting properties to find powerful calculation tricks. The name comes from the conformal bootstrap, a technique that finds conformal theories (roughly: theories that are the same at every scale) by “pulling itself by its own boostraps”, using nothing but a kind of self-consistency.

Many accounts, including Cole’s, attribute people like the boostrappers to AdS/CFT as well, crediting it with inspiring string theorists to take a closer look at particle physics-style theories. That may be true in some cases, but I don’t think it’s the whole story: my subfield is bootstrappy, and while it has drawn on AdS/CFT that wasn’t what got it started. Overall, I think it’s more the case that the tools of string theory’s “particle physics-esque approach”, like conformal theories and supersymmetry, ended up (perhaps unsurprisingly) useful for understanding particle physics-style theories.

Not everyone is a “boostrapper” or an “entangler”, even in the broad sense I’m using the words. The two groups also sometimes overlap. Nevertheless, it’s a good way to think about what string theorists are doing these days. Both of these groups start out learning string theory: it’s the only way to learn about AdS/CFT, and it introduces the bootstrappers to a bunch of powerful particle physics tools all in one course. Where they go from there varies, and can be more or less “stringy”. But it’s research that wouldn’t have existed without string theory to get it started.

Particles Aren’t Vibrations (at Least, Not the Ones You Think)

You’ve probably heard this story before, likely from Brian Greene.

In string theory, the fundamental particles of nature are actually short lengths of string. These strings can vibrate, and like a string on a violin, that vibration is arranged into harmonics. The more energy in the string, the more complex the vibration. In string theory, each of these vibrations corresponds to a different particle, explaining how the zoo of particles we observe can come out of a single type of fundamental string.

250px-moodswingerscale-svg

Particles. Probably.

It’s a nice story. It’s even partly true. But it gives a completely wrong idea of where the particles we’re used to come from.

Making a string vibrate takes energy, and that energy is determined by the tension of the string. It’s a lot harder to wiggle a thick rubber band than a thin one, if you’re holding both tightly.

String theory’s strings are under a lot of tension, so it takes a lot of energy to make them vibrate. From our perspective, that energy looks like mass, so the more complicated harmonics on a string correspond to extremely massive particles, close to the Planck mass!

Those aren’t the particles you’re used to. They’re not electrons, they’re not dark matter. They’re particles we haven’t observed, and may never observe. They’re not how string theory explains the fundamental particles of nature.

So how does string theory go from one fundamental type of string to all of the particles in the universe, if not through these vibrations? As it turns out, there are several different ways it can happen, tricks that allow the lightest and simplest vibrations to give us all the particles we’ve observed.* I’ll describe a few.

The first and most important trick here is supersymmetry. Supersymmetry relates different types of particles to each other. In string theory, it means that along with vibrations that go higher and higher, there are also low-energy vibrations that behave like different sorts of particles. In a sense, string theory sticks a quantum field theory inside another quantum field theory, in a way that would make Xzibit proud.

Even with supersymmetry, string theory doesn’t give rise to all of the right sorts of particles. You need something else, like compactifications or branes.

The strings of string theory live in ten dimensions, it’s the only place they’re mathematically consistent. Since our world looks four-dimensional, something has to happen to the other six dimensions. They have to be curled up, in a process called compactification. There are lots and lots (and lots) of ways to do this compactification, and different ways of curling up the extra dimensions give different places for strings to move. These new options make the strings look different in our four-dimensional world: a string curled around a donut hole looks very different from one that moves freely. Each new way the string can move or vibrate can give rise to a new particle.

Another option to introduce diversity in particles is to use branes. Branes (short for membranes) are surfaces that strings can end on. If two strings end on the same brane, those ends can meet up and interact. If they end on different branes though, then they can’t. By cleverly arranging branes, then, you can have different sets of strings that interact with each other in different ways, reproducing the different interactions of the particles we’re familiar with.

In string theory, the particles we’re used to aren’t just higher harmonics, or vibrations with more and more energy. They come from supersymmetry, from compactifications and from branes. The higher harmonics are still important: there are theorems that you can’t fix quantum gravity with a finite number of extra particles, so the infinite tower of vibrations allows string theory to exploit a key loophole. They just don’t happen to be how string theory gets the particles of the Standard Model. The idea that every particle is just a higher vibration is a common misconception, and I hope I’ve given you a better idea of how string theory actually works.

 

*But aren’t these lightest vibrations still close to the Planck mass? Nope! See the discussion with TE in the comments for details.