Tag Archives: string theory

When It Rains It Amplitudes

The last few weeks have seen a rain of amplitudes papers on arXiv, including quite a few interesting ones.

rainydays

As well as a fair amount of actual rain in Copenhagen

Over the last year Nima Arkani-Hamed has been talking up four or five really interesting results, and not actually publishing any of them. This has understandably frustrated pretty much everybody. In the last week he published two of them, Cosmological Polytopes and the Wavefunction of the Universe with Paolo Benincasa and Alexander Postnikov and Scattering Amplitudes For All Masses and Spins with Tzu-Chen Huang and Yu-tin Huang. So while I’ll have to wait on the others (I’m particularly looking forward to seeing what he’s been working on with Ellis Yuan) this can at least tide me over.

Cosmological Polytopes and the Wavefunction of the Universe is Nima & co.’s attempt to get a geometrical picture for cosmological correlators, analogous to the Ampituhedron. Cosmological correlators ask questions about the overall behavior of the visible universe: how likely is one clump of matter to be some distance from another? What sorts of patterns might we see in the Cosmic Microwave Background? This is the sort of thing that can be used for “cosmological collider physics”, an idea I mention briefly here.

Paolo Benincasa was visiting Perimeter near the end of my time there, so I got a few chances to chat with him about this. One thing he mentioned, but that didn’t register fully at the time, was Postnikov’s involvement. I had expected that even if Nima and Paolo found something interesting that it wouldn’t lead to particularly deep mathematics. Unlike the N=4 super Yang-Mills theory that generates the Amplituhedron, the theories involved in these cosmological correlators aren’t particularly unique, they’re just a particular class of models cosmologists use that happen to work well with Nima’s methods. Given that, it’s really surprising that they found something mathematically interesting enough to interest Postnikov, a mathematician who was involved in the early days of the Amplituhedron’s predecessor, the Positive Grassmannian. If there’s something that mathematically worthwhile in such a seemingly arbitrary theory then perhaps some of the beauty of the Amplithedron are much more general than I had thought.

Scattering Amplitudes For All Masses and Spins is on some level a byproduct of Nima and Yu-tin’s investigations of whether string theory is unique. Still, it’s a useful byproduct. Many of the tricks we use in scattering amplitudes are at their best for theories with massless particles. Once the particles have masses our notation gets a lot messier, and we often have to rely on older methods. What Nima, Yu-tin, and Tzu-Chen have done here is to build a notation similar to what we use for massless particle, but for massive ones.

The advantage of doing this isn’t just clean-looking papers: using this notation makes it a lot easier to see what kinds of theories make sense. There are a variety of old theorems that restrict what sorts of theories you can write down: photons can’t interact directly with each other, there can only be one “gravitational force”, particles with spins greater than two shouldn’t be massless, etc. The original theorems were often fairly involved, but for massless particles there were usually nice ways to prove them in modern amplitudes notation. Yu-tin in particular has a lot of experience finding these kinds of proofs. What the new notation does is make these nice simple proofs possible for massive particles as well. For example, you can try to use the new notation to write down an interaction between a massive particle with spin greater than two and gravity, and what you find is that any expression you write breaks down: it works fine at low energies, but once you’re looking at particles with energies much higher than their mass you start predicting probabilities greater than one. This suggests that particles with higher spins shouldn’t be “fundamental”, they should be explained in terms of other particles at higher energies. The only way around this turns out to be an infinite series of particles to cancel problems from the previous ones, the sort of structure that higher vibrations have in string theory. I often don’t appreciate papers that others claim are a pleasure to read, but this one really was a pleasure to read: there’s something viscerally satisfying about seeing so many important constraints manifest so cleanly.

I’ve talked before about the difference between planar and non-planar theories. Planar theories end up being simpler, and in the case of N=4 super Yang-Mills this results in powerful symmetries that let us do much more complicated calculations. Non-planar theories are more complicated, but necessary for understanding gravity. Dual Conformal Symmetry, Integration-by-Parts Reduction, Differential Equations and the Nonplanar Sector, a new paper by Zvi Bern, Michael Enciso, Harald Ita, and Mao Zeng, works on bridging the gap between these two worlds.

Most of the paper is concerned with using some of the symmetries of N=4 super Yang-Mills in other, more realistic (but still planar) theories. The idea is that even if those symmetries don’t hold one can still use techniques that respect those symmetries, and those techniques can often be a lot cleaner than techniques that don’t. This is probably the most practically useful part of the paper, but the part I was most curious about is in the last few sections, where they discuss non-planar theories. For a while now I’ve been interested in ways to treat a non-planar theory as if it were planar, to try to leverage the powerful symmetries we have in planar N=4 super Yang-Mills elsewhere. Their trick is surprisingly simple: they just cut the diagram open! Oddly enough, they really do end up with similar symmetries using this method. I still need to read this in more detail to understand its limitations, since deep down it feels like something this simple couldn’t possibly work. Still, if anything like the symmetries of planar N=4 holds in the non-planar case there’s a lot we could do with it.

There are a bunch of other interesting recent papers that I haven’t had time to read. Some look like they might relate to weird properties of N=4 super Yang-Mills, others say interesting things about the interconnected web of theories tied together by their behavior when a particle becomes “soft”. Another presents a method for dealing with elliptic functions, one of the main obstructions to applying my hexagon function technique to more situations. And of course I shouldn’t fail to mention a paper by my colleague Carlos Cardona, applying amplitudes techniques to AdS/CFT. Overall, a lot of interesting stuff in a short span of time. I should probably get back to reading it!

Advertisements

The Multiverse Can Only Kill Physics by Becoming Physics

I’m not a fan of the multiverse. I think it’s over-hyped, way beyond its current scientific support.

But I don’t think it’s going to kill physics.

By “the multiverse” I’m referring to a group of related ideas. There’s the idea that we live in a vast, varied universe, with different physical laws in different regions. Relatedly, there’s the idea that the properties of our region aren’t typical of the universe as a whole, just typical of places where life can exist. It may be that in most of the universe the cosmological constant is enormous, but if life can only exist in places where it is tiny then a tiny cosmological constant is what we’ll see. That sort of logic is called anthropic reasoning. If it seems strange, think about a smaller scale: there are many planets in the universe, but only a small number of them can support life. Still, we shouldn’t be surprised that we live on a planet that can support life: if it couldn’t, we wouldn’t live here!

If we really do live in a multiverse, though, some of what we think of as laws of physics are just due to random chance. Maybe the quarks have the masses they do not for some important reason, but just because they happened to end up that way in our patch of the universe.

This seems to have depressing implications. If the laws of physics are random, or just consequences of where life can exist, then what’s left to discover? Why do experiments at all?

Well, why not ask the geoscientists?

tectonic_plate_boundaries

These guys

We might live in one universe among many, but we definitely live on one planet among many. And somehow, this realization hasn’t killed geoscience.

That’s because knowing we live on a random planet doesn’t actually tell us very much.

Now, I’m not saying you can’t do anthropic reasoning about the Earth. For example, it looks like an active system of plate tectonics is a necessary ingredient for life. Even if plate tectonics is rare, we shouldn’t be surprised to live on a planet that has it.

Ok, so imagine it’s 1900, before Wegener proposed continental drift. Scientists believe there are many planets in the universe, that we live in a “multiplanet”. Could you predict plate tectonics?

Even knowing that we live on one of the few planets that can support life, you don’t know how it supports life. Even living in a “multiplanet”, geoscience isn’t dead. The specifics of our Earth are still going to teach you something important about how planets work.

Physical laws work the same way. I’ve said that the masses of the quarks could be random, but it’s not quite that simple. The underlying reasons why the masses of the quarks are what they are could be random: the specifics of how six extra dimensions happened to curl up in our region of the universe, for example. But there’s important physics in between: the physics of how those random curlings of space give rise to quark masses. There’s a mechanism there, and we can’t just pick one out of a hat or work backwards to it anthropically. We have to actually go out and discover the answer.

Similarly, we don’t know automatically which phenomena are “random”, which are “anthropic”, and which are required by some deep physical principle. Even in a multiverse, we can’t assume that everything comes down to chance, we only know that some things will, much as the geoscientists don’t know what’s unique to Earth and what’s true of every planet without actually going out and checking.

You can even find a notion of “naturalness” here, if you squint. In physics, we find phenomena like the mass of the Higgs “unnatural”, they’re “fine-tuned” in a way that cries out for an explanation. Normally, we think of this in terms of a hypothetical “theory of everything”: the more “fine-tuned” something appears, the harder it would be to explain it in a final theory. In a multiverse, it looks like we’d have to give up on this, because even the most unlikely-looking circumstance would happen somewhere, especially if it’s needed for life.

Once again, though, imagine you’re a geoscientist. Someone suggests a ridiculously fine-tuned explanation for something: perhaps volcanoes only work if they have exactly the right amount of moisture. Even though we live on one planet in a vast universe, you’re still going to look for simpler explanations before you move on to more complicated ones. It’s human nature, and by and large it’s the only way we’re capable of doing science. As physicists, we’ve papered this over with technical definitions of naturalness, but at the end of the day even in a multiverse we’ll still start with less fine-tuned-looking explanations and only accept the fine-tuned ones when the evidence forces us to. It’s just what people do.

The only way for anthropic reasoning to get around this, to really make physics pointless once and for all, is if it actually starts making predictions. If anthropic reasoning in physics can be made much stronger than anthropic reasoning in geoscience (which, as mentioned, didn’t predict tectonic plates until a century after their discovery) then maybe we can imagine getting to a point where it tells us what particles we should expect to discover, and what masses they should have.

At that point, though, anthropic reasoning won’t have made physics pointless: it will have become physics.

If anthropic reasoning is really good enough to make reliable, falsifiable predictions, then we should be ecstatic! I don’t think we’re anywhere near that point, though some people are earnestly trying to get there. But if it really works out, then we’d have a powerful new method to make predictions about the universe.

 

Ok, so with all of this said, there is one other worry.

Karl Popper criticized Marxism and Freudianism for being unfalsifiable. In both disciplines, there was a tendency to tell what were essentially “just-so stories”. They could “explain” any phenomenon by setting it in their framework and explaining how it came to be “just so”. These explanations didn’t make new predictions, and different people often ended up coming up with different explanations with no way to distinguish between them. They were stories, not scientific hypotheses. In more recent times, the same criticism has been made of evolutionary psychology. In each case the field is accused of being able to justify anything and everything in terms of its overly ambiguous principles, whether dialectical materialism, the unconscious mind, or the ancestral environment.

just_so_stories_kipling_1902

Or an elephant’s ‘satiable curtiosity

You’re probably worried that this could happen to physics. With anthropic reasoning and the multiverse, what’s to stop physicists from just proposing some “anthropic” just-so-story for any evidence we happen to find, no matter what it is? Surely anything could be “required for life” given a vague enough argument.

You’re also probably a bit annoyed that I saved this objection for last. I know that for many people, this is precisely what you mean when you say the multiverse will “kill physics”.

I’ve saved this for last for a reason though. It’s because I want to point out something important: this outcome, that our field degenerates into just-so-stories, isn’t required by the physics of the multiverse. Rather, it’s a matter of sociology.

If we hold anthropic reasoning to the same standards as the rest of physics, then there’s no problem: if an anthropic explanation doesn’t make falsifiable predictions then we ignore it. The problem comes if we start loosening our criteria, start letting people publish just-so-stories instead of real science.

This is a real risk! I don’t want to diminish that. It’s harder than it looks for a productive academic field to fall into bullshit, but just-so-stories are a proven way to get there.

What I want to emphasize is that we’re all together in this. We all want to make sure that physics remains scientific. We all need to be vigilant, to prevent a culture of just-so-stories from growing. Regardless of whether the multiverse is the right picture, and regardless of how many annoying TV specials they make about it in the meantime, that’s the key: keeping physics itself honest. If we can manage that, nothing we discover can kill our field.

Thoughts on Polchinski’s Memoir

I didn’t get a chance to meet Joseph Polchinski when I was visiting Santa Barbara last spring. At the time, I heard his health was a bit better, but he still wasn’t feeling well enough to come in to campus. Now that I’ve read his memoir, I almost feel like I have met him. There’s a sense of humor, a diffidence, and a passion for physics that shines through the pages.

The following are some scattered thoughts inspired by the memoir:

 

A friend of mine once complained to me that in her field grad students all brag about the colleges they went to. I mentioned that in my field your undergrad never comes up…unless it was Caltech. For some reason, everyone I’ve met who went to Caltech is full of stories about the place, and Polchinski is no exception. Speaking as someone who didn’t go there, it seems like Caltech has a profound effect on its students that other places don’t.

 

Polchinski mentions hearing stories about geniuses of the past, and how those stories helped temper some of his youthful arrogance. There’s an opposite effect that’s also valuable: hearing stories like Polchinski’s, his descriptions of struggling with anxiety and barely publishing and “not really accomplishing anything” till age 40, can be a major comfort to those of us who worry we’ve fallen behind in the academic race. That said, it’s important not to take these things too far: times have changed, you’re not Polchinski, and much like his door-stealing trick at Caltech getting a postdoc without any publications is something you shouldn’t try at home. Even Witten’s students need at least one.

 

Last week I was a bit puzzled by nueww’s comment, a quote from Polchinski’s memoir which distinguishes “math of the equations” from “math of the solutions”, attributing the former to physicists and the latter to mathematicians. Reading the context in the memoir and the phrase’s origin in a remark by Susskind cleared up a bit, but still left me uneasy. I only figured out why after Lubos Motl posted about it: it doesn’t match my experience of mathematicians at all!

If anything, I think physicists usually care more about the “solutions” than mathematicians do. In my field, often a mathematician will construct some handy basis of functions and then frustrate everyone by providing no examples of how to use them. In the wider math community I’ve met graph theorists who are happy to prove something is true for all graphs of size 10^{10^10} and larger, not worrying about the vast number of graphs where it fails because it’s just a finite number of special cases. And I don’t think this is just my experience: a common genre of jokes revolve around mathematicians proving a solution exists and then not bothering to do anything with it (for example, see the joke with the hotel fire here).

I do think there’s a meaningful sense in which mathematicians care about details that we’re happy to ignore, but “solutions” versus “equations” isn’t really the right axis. It’s something more like “rigor” versus “principles”. Mathematicians will often begin a talk by defining a series of maps between different spaces, carefully describing where they are and aren’t valid. A physicist might just write down a function. That sort of thing is dangerous in mathematics: there are always special, pathological cases that make careful definitions necessary. In physics, those cases rarely come up, and when they do there’s often a clear physical problem that brings them to the forefront. We have a pretty good sense of when we need rigor, and when we don’t we’re happy to lay things out without filling in the details, putting a higher priority on moving forward and figuring out the basic principles underlying reality.

 

Polchinski talks a fair bit about his role in the idea of the multiverse, from hearing about Weinberg’s anthropic argument to coming to terms with the string landscape. One thing his account makes clear is how horrifying the concept seemed at first: how the idea that the parameters of our universe might just be random could kill science and discourage experimentalists. This touches on something that I think gets lost in arguments about the multiverse: even the people most involved in promoting the multiverse in public aren’t happy about it.

It also sharpened my thinking about the multiverse a bit. I’ve talked before about how I don’t think the popularity of the multiverse is actually going to hurt theoretical physics as a field. Polchinski’s worries made me think about the experimental side of the equation: why do experiments if the world might just be random? I think I have a clearer answer to this now, but it’s a bit long, so I’ll save it for a future post.

 

One nice thing about these long-term accounts is you get to see how much people shift between fields over time. Polchinski didn’t start out working in string theory, and most of the big names in my field, like Lance Dixon and David Kosower, didn’t start out in scattering amplitudes. Academic careers are long, and however specialized we feel at any one time we can still get swept off in a new direction.

 

I’m grateful for this opportunity to “meet” Polchinski, if only through his writing. His is a window on the world of theoretical physics that is all too rare, and valuable as a result.

More Travel

I’m visiting the Niels Bohr Institute this week, on my way back from Amplitudes.

IMG_20170719_152906

You might recognize the place from old conference photos.

Amplitudes itself was nice. There weren’t any surprising new developments, but a lot of little “aha” moments when one of the speakers explained something I’d heard vague rumors about. I figured I’d mention a few of the things that stood out. Be warned, this is going to be long and comparatively jargon-heavy.

The conference organizers were rather daring in scheduling Nima Arkani-Hamed for the first talk, as Nima has a tendency to arrive at the last minute and talk for twice as long as you ask him to. Miraculously, though, things worked out, if only barely: Nima arrived at the wrong campus and ran most of the way back, showing up within five minutes of the start of the conference. He also stuck to his allotted time, possibly out of courtesy to his student, Yuntao Bai, who was speaking next.

Between the two of them, Nima and Yuntao covered an interesting development, tying the Amplituhedron together with the string theory-esque picture of scattering amplitudes pioneered by Freddy Cachazo, Song He, and Ellis Ye Yuan (or CHY). There’s a simpler (and older) Amplituhedron-like object called the associahedron that can be thought of as what the Amplituhedron looks like on the surface of a string, and CHY’s setup can be thought of as a sophisticated map that takes this object and turns it into the Amplituhedron. It was nice to hear from both Nima and his student on this topic, because Nima’s talks are often high on motivation but low on detail, so it was great that Yuntao was up next to fill in the blanks.

Anastasia Volovich talked about Landau singularities, a topic I’ve mentioned before. What I hadn’t appreciated was how much they can do with them at this point. Originally, Juan Maldacena had suggested that these singularities, mathematical points that determine the behavior of amplitudes first investigated by Landau in the 60’s, might explain some of the simplicity we’ve observed in N=4 super Yang-Mills. They ended up not being enough by themselves, but what Volovich and collaborators are discovering is that with a bit of help from the Amplithedron they explain quite a lot. In particular, if they start with the Amplituhedron and do a procedure similar to Landau’s, they can find the simpler set of singularities allowed by N=4 super Yang-Mills, at least for the examples they’ve calculated. It’s still a bit unclear how this links to their previous investigations of these things in terms of cluster algebras, but it sounds like they’re making progress.

Dmitry Chicherin gave me one of those minor “aha” moments. One big useful fact about scattering amplitudes in N=4 super Yang-Mills is that they’re “dual” to different mathematical objects called Wilson loops, a fact which allows us to compare to the “POPE” approach of Basso, Sever, and Vieira. Chicherin asks the question: “What if you’re not calculating a scattering amplitude or a Wilson loop, but something halfway in between?” Interestingly, this has an answer, with the “halfway between” objects having a similar duality among themselves.

Yorgos Papathansiou talked about work I’ve been involved with. I’ll probably cover it in detail in another post, so now I’ll just mention that we’re up to six loops!

Andy Strominger talked about soft theorems. It’s always interesting seeing people who don’t traditionally work on amplitudes giving talks at Amplitudes. There’s a range of responses, from integrability people (who are basically welcomed like family) to work on fairly unrelated areas that have some “amplitudes” connection (met with yawns except from the few people interested in the connection). The response to Strominger was neither welcome nor boredom, but lively debate. He’s clearly doing something interesting, but many specialists worried he was ignorant of important no-go results in the field that could hamstring some of his bolder conjectures.

The second day focused on methods for more practical calculations, and had the overall effect of making me really want to clean up my code. Tiziano Peraro’s finite field methods in particular look like they could be quite useful. There were two competing bases of integrals on display, Von Manteuffel’s finite integrals and Rutger Boels’s uniform transcendental integrals later in the conference. Both seem to have their own virtues, and I ended up asking Rob Schabinger if it was possible to combine the two, with the result that he’s apparently now looking into it.

The more practical talks that day had a clear focus on calculations with two loops, which are becoming increasingly viable for LHC-relevant calculations. From talking to people who work on this, I get the impression that the goal of these calculations isn’t so much to find new physics as to confirm and investigate new physics found via other methods. Things are complicated enough at two loops that for the moment it isn’t feasible to describe what all the possible new particles might do at that order, and instead the goal is to understand the standard model well enough that if new physics is noticed (likely based on one-loop calculations) then the details can be pinned down by two-loop data. But this picture could conceivably change as methods improve.

Wednesday was math-focused. We had a talk by Francis Brown on his conjecture of a cosmic Galois group. This is a topic I knew a bit about already, since it’s involved in something I’ve been working on. Brown’s talk cleared up some things, but also shed light on the vagueness of the proposal. As with Yorgos’s talk, I’ll probably cover more about this in a future post, so I’ll skip the details for now.

There was also a talk by Samuel Abreu on a much more physical picture of the “symbols” we calculate with. This is something I’ve seen presented before by Ruth Britto, and it’s a setup I haven’t looked into as much as I ought to. It does seem at the moment that they’re limited to one loop, which is a definite downside. Other talks discussed elliptic integrals, the bogeyman that we still can’t deal with by our favored means but that people are at least understanding better.

The last talk on Wednesday before the hike was by David Broadhurst, who’s quite a character in his own right. Broadhurst sat in the front row and asked a question after nearly every talk, usually bringing up papers at least fifty years old, if not one hundred and fifty. At the conference dinner he was exactly the right person to read the Address to the Haggis, resurrecting a thick Scottish accent from his youth. Broadhurst’s techniques for handling high-loop elliptic integrals are quite impressively powerful, leaving me wondering if the approach can be generalized.

Thursday focused on gravity. Radu Roiban gave a better idea of where he and his collaborators are on the road to seven-loop supergravity and what the next bottlenecks are along the way. Oliver Schlotterer’s talk was another one of those “aha” moments, helping me understand a key difference between two senses in which gravity is Yang-Mills squared ( the Kawai-Lewellen-Tye relations and BCJ). In particular, the latter is much more dependent on specifics of how you write the scattering amplitude, so to the extent that you can prove something more like the former at higher loops (the original was only for trees, unlike BCJ) it’s quite valuable. Schlotterer has managed to do this at one loop, using the “Q-cut” method I’ve (briefly) mentioned before. The next day’s talk by Emil Bjerrum-Bohr focused more heavily on these Q-cuts, including a more detailed example at two loops than I’d seen that group present before.

There was also a talk by Walter Goldberger about using amplitudes methods for classical gravity, a subject I’ve looked into before. It was nice to see a more thorough presentation of those ideas, including a more honest appraisal of which amplitudes techniques are really helpful there.

There were other interesting topics, but I’m already way over my usual post length, so I’ll sign off for now. Videos from all but a few of the talks are now online, so if you’re interested you should watch them on the conference page.

The Way You Think Everything Is Connected Isn’t the Way Everything Is Connected

I hear it from older people, mostly.

“Oh, I know about quantum physics, it’s about how everything is connected!”

“String theory: that’s the one that says everything is connected, right?”

“Carl Sagan said we are all stardust. So really, everything is connected.”

connect_four

It makes Connect Four a lot easier anyway

I always cringe a little when I hear this. There’s a misunderstanding here, but it’s not a nice clean one I can clear up in a few sentences. It’s a bunch of interconnected misunderstandings, mixing some real science with a lot of confusion.

To get it out of the way first, no, string theory is not about how “everything is connected”. String theory describes the world in terms of strings, yes, but don’t picture those strings as links connecting distant places: string theory’s proposed strings are very, very short, much smaller than the scales we can investigate with today’s experiments. The reason they’re thought to be strings isn’t because they connect distant things, it’s because it lets them wiggle (counteracting some troublesome wiggles in quantum gravity) and wind (curling up in six extra dimensions in a multitude of ways, giving us what looks like a lot of different particles).

(Also, for technical readers: yes, strings also connect branes, but that’s not the sort of connection these people are talking about.)

What about quantum mechanics?

Here’s where it gets trickier. In quantum mechanics, there’s a phenomenon called entanglement. Entanglement really does connect things in different places…for a very specific definition of “connect”. And there’s a real (but complicated) sense in which these connections end up connecting everything, which you can read about here. There’s even speculation that these sorts of “connections” in some sense give rise to space and time.

You really have to be careful here, though. These are connections of a very specific sort. Specifically, they’re the sort that you can’t do anything through.

Connect two cans with a length of string, and you can send messages between them. Connect two particles with entanglement, though, and you can’t send messages between them…at least not any faster than between two non-entangled particles. Even in a quantum world, physics still respects locality: the principle that you can only affect the world where you are, and that any changes you make can’t travel faster than the speed of light. Ansibles, science-fiction devices that communicate faster than light, can’t actually exist according to our current knowledge.

What kind of connection is entanglement, then? That’s a bit tricky to describe in a short post. One way to think about entanglement is as a connection of logic.

Imagine someone takes a coin and cuts it along the rim into a heads half and a tails half. They put the two halves in two envelopes, and randomly give you one. You don’t know whether you have heads or tails…but you know that if you open your envelope and it shows heads, the other envelope must have tails.

m_nickel

Unless they’re a spy. Then it could contain something else.

Entanglement starts out with connections like that. Instead of a coin, take a particle that isn’t spinning and “split” it into two particles spinning in different directions, “spin up” and “spin down”. Like the coin, the two particles are “logically connected”: you know if one of them is “spin up” the other is “spin down”.

What makes a quantum coin different from a classical coin is that there’s no way to figure out the result in advance. If you watch carefully, you can see which coin gets put in to which envelope, but no matter how carefully you look you can’t predict which particle will be spin up and which will be spin down. There’s no “hidden information” in the quantum case, nowhere nearby you can look to figure it out.

That makes the connection seem a lot weirder than a regular logical connection. It also has slightly different implications, weirdness in how it interacts with the rest of quantum mechanics, things you can exploit in various ways. But none of those ways, none of those connections, allow you to change the world faster than the speed of light. In a way, they’re connecting things in the same sense that “we are all stardust” is connecting things: tied together by logic and cause.

So as long as this is all you mean by “everything is connected” then sure, everything is connected. But often, people seem to mean something else.

Sometimes, they mean something explicitly mystical. They’re people who believe in dowsing rods and astrology, in sympathetic magic, rituals you can do in one place to affect another. There is no support for any of this in physics. Nothing in quantum mechanics, in string theory, or in big bang cosmology has any support for altering the world with the power of your mind alone, or the stars influencing your day to day life. That’s just not the sort of connection we’re talking about.

Sometimes, “everything is connected” means something a bit more loose, the idea that someone’s desires guide their fate, that you could “know” something happened to your kids the instant it happens from miles away. This has the same problem, though, in that it’s imagining connections that let you act faster than light, where people play a special role. And once again, these just aren’t that sort of connection.

Sometimes, finally, it’s entirely poetic. “Everything is connected” might just mean a sense of awe at the deep physics in mundane matter, or a feeling that everyone in the world should get along. That’s fine: if you find inspiration in physics then I’m glad it brings you happiness. But poetry is personal, so don’t expect others to find the same inspiration. Your “everyone is connected” might not be someone else’s.

An Amplitudes Flurry

Now that we’re finally done with flurries of snow here in Canada, in the last week arXiv has been hit with a flurry of amplitudes papers.

kitchener-construction

We’re also seeing a flurry of construction, but that’s less welcome.

Andrea Guerrieri, Yu-tin Huang, Zhizhong Li, and Congkao Wen have a paper on what are known as soft theorems. Most famously studied by Weinberg, soft theorems are proofs about what happens when a particle in an amplitude becomes “soft”, or when its momentum becomes very small. Recently, these theorems have gained renewed interest, as new amplitudes techniques have allowed researchers to go beyond Weinberg’s initial results (to “sub-leading” order) in a variety of theories.

Guerrieri, Huang, Li, and Wen’s contribution to the topic looks like it clarifies things quite a bit. Previously, most of the papers I’d seen about this had been isolated examples. This paper ties the various cases together in a very clean way, and does important work in making some older observations more rigorous.

 

Vittorio Del Duca, Claude Duhr, Robin Marzucca, and Bram Verbeek wrote about transcendental weight in something known as the multi-Regge limit. I’ve talked about transcendental weight before: loosely, it’s counting the power of pi that shows up in formulas. The multi-Regge limit concerns amplitudes with very high energies, in which we have a much better understanding of how the amplitudes should behave. I’ve used this limit before, to calculate amplitudes in N=4 super Yang-Mills.

One slogan I love to repeat is that N=4 super Yang-Mills isn’t just a toy model, it’s the most transcendental part of QCD. I’m usually fairly vague about this, because it’s not always true: while often a calculation in N=4 super Yang-Mills will give the part of the same calculation in QCD with the highest power of pi, this isn’t always the case, and it’s hard to propose a systematic principle for when it should happen. Del Duca, Duhr, Marzucca, and Verbeek’s work is a big step in that direction. While some descriptions of the multi-Regge limit obey this property, others don’t, and in looking at the ones that don’t the authors gain a better understanding of what sorts of theories only have a “maximally transcendental part”. What they find is that even when such theories aren’t restricted to N=4 super Yang-Mills, they have shared properties, like supersymmetry and conformal symmetry. Somehow these properties are tied to the transcendentality of functions in the amplitude, in a way that’s still not fully understood.

 

My colleagues at Perimeter released two papers over the last week: one, by Freddy Cachazo and Alfredo Guevara, uses amplitudes techniques to look at classical gravity, while the other, by Sebastian Mizera and Guojun Zhang, looks at one of the “pieces” inside string theory amplitudes.

I worked with Freddy and Alfredo on an early version of their result, back at the PSI Winter School. While I was off lazing about in Santa Barbara, they were hard at work trying to understand how the quantum-looking “loops” one can use to make predictions for potential energy in classical gravity are secretly classical. What they ended up finding was a trick to figure out whether a given amplitude was going to have a classical part or be purely quantum. So far, the trick works for amplitudes with one loop, and a few special cases at higher loops. It’s still not clear if it works for the general case, and there’s a lot of work still to do to understand what it means, but it definitely seems like an idea with potential. (Pun mostly not intended.)

I’ve talked before about “Z theory”, the weird thing you get when you isolate the “stringy” part of string theory amplitudes. What Sebastian and Guojun have carved out isn’t quite the same piece, but it’s related. I’m still not sure of the significance of cutting string amplitudes up in this way, I’ll have to read the paper more thoroughly (or chat with the authors) to find out.

The Many Worlds of Condensed Matter

Physics is the science of the very big and the very small. We study the smallest scales, the fundamental particles that make up the universe, and the largest, stars on up to the universe as a whole.

We also study the world in between, though.

That’s the domain of condensed matter, the study of solids, liquids, and other medium-sized arrangements of stuff. And while it doesn’t make the news as often, it’s arguably the biggest field in physics today.

(In case you’d like some numbers, the American Physical Society has divisions dedicated to different sub-fields. Condensed Matter Physics is almost twice the size of the next biggest division, Particles & Fields. Add in other sub-fields that focus on medium-sized-stuff, like those who work on solid state physics, optics, or biophysics, and you get a majority of physicists focused on the middle of the distance scale.)

When I started grad school, I didn’t pay much attention to condensed matter and related fields. Beyond the courses in quantum field theory and string theory, my “breadth” courses were on astrophysics and particle physics. But over and over again, from people in every sub-field, I kept hearing the same recommendation:

“You should take Solid State Physics. It’s a really great course!”

At the time, I never understood why. It was only later, once I had some research under my belt, that I realized:

Condensed matter uses quantum field theory!

The same basic framework, describing the world in terms of rippling quantum fields, doesn’t just work for fundamental particles. It also works for materials. Rather than describing the material in terms of its fundamental parts, condensed matter physicists “zoom out” and talk about overall properties, like sound waves and electric currents, treating them as if they were the particles of quantum field theory.

This tends to confuse the heck out of journalists. Not used to covering condensed matter (and sometimes egged on by hype from the physicists), they mix up the metaphorical particles of these systems with the sort of particles made by the LHC, with predictably dumb results.

Once you get past the clumsy journalism, though, this kind of analogy has a lot of value.

Occasionally, you’ll see an article about string theory providing useful tools for condensed matter. This happens, but it’s less widespread than some of the articles make it out to be: condensed matter is a huge and varied field, and string theory applications tend to be of interest to only a small piece of it.

It doesn’t get talked about much, but the dominant trend is actually in the other direction: increasingly, string theorists need to have at least a basic background in condensed matter.

String theory’s curse/triumph is that it can give rise not just to one quantum field theory, but many: a vast array of different worlds obtained by twisting extra dimensions in different ways. Particle physicists tend to study a fairly small range of such theories, looking for worlds close enough to ours that they still fit the evidence.

Condensed matter, in contrast, creates its own worlds. Pick the right material, take the right slice, and you get quantum field theories of almost any sort you like. While you can’t go to higher dimensions than our usual four, you can certainly look at lower ones, at the behavior of currents on a sheet of metal or atoms arranged in a line. This has led some condensed matter theorists to examine a wide range of quantum field theories with one strange behavior or another, theories that wouldn’t have occurred to particle physicists but that, in many cases, are part of the cornucopia of theories you can get out of string theory.

So if you want to explore the many worlds of string theory, the many worlds of condensed matter offer a useful guide. Increasingly, tools from that community, like integrability and tensor networks, are migrating over to ours.

It’s gotten to the point where I genuinely regret ignoring condensed matter in grad school. Parts of it are ubiquitous enough, and useful enough, that some of it is an expected part of a string theorist’s background. The many worlds of condensed matter, as it turned out, were well worth a look.