Tag Archives: quarks

Amplitudes Papers I Haven’t Had Time to Read

Interesting amplitudes papers seem to come in groups. Several interesting papers went up this week, and I’ve been too busy to read any of them!

Well, that’s not quite true, I did manage to read this paper, by James Drummond, Jack Foster, and Omer Gurdogan. At six pages long, it wasn’t hard to fit in, and the result could be quite useful. The way my collaborators and I calculate amplitudes involves building up a mathematical object called a symbol, described in terms of a string of “letters”. What James and collaborators have found is a restriction on which “letters” can appear next to each other, based on the properties of a mathematical object called a cluster algebra. Oddly, the restriction seems to have the same effect as a more physics-based condition we’d been using earlier. This suggests that the abstract mathematical restriction and the physics-based restriction are somehow connected, but we don’t yet understand how. It also could be useful for letting us calculate amplitudes with more particles: previously we thought the number of “letters” we’d have to consider there was going to be infinite, but with James’s restriction we’d only need to consider a finite number.

I didn’t get a chance to read David Dunbar, John Godwin, Guy Jehu, and Warren Perkins’s paper. They’re computing amplitudes in QCD (which unlike N=4 super Yang-Mills actually describes the real world!) and doing so for fairly complicated arrangements of particles. They claim to get remarkably simple expressions: since that sort of claim was what jump-started our investigations into N=4, I should probably read this if only to see if there’s something there in the real world amenable to our technique.

I also haven’t read Rutger Boels and Hui Lui’s paper yet. From the abstract, I’m still not clear which parts of what they’re describing is new, or how much it improves on existing methods. It will probably take a more thorough reading to find out.

I really ought to read Burkhard Eden, Yunfeng Jiang, Dennis le Plat, and Alessandro Sfondrini’s paper. They’re working on a method referred to as the Hexagon Operator Product Expansion, or HOPE. It’s related to an older method, the Pentagon Operator Product Expansion (POPE), but applicable to trickier cases. I’ve been keeping an eye on the HOPE in part because my collaborators have found the POPE very useful, and the HOPE might enable something similar. It will be interesting to find out how Eden et al.’s paper modifies the HOPE story.

Finally, I’ll probably find the time to read my former colleague Sebastian Mizera’s paper. He’s found a connection between the string-theory-like CHY picture of scattering amplitudes and some unusual mathematical structures. I’m not sure what to make of it until I get a better idea of what those structures are.

Advertisements

Bootstrapping in the Real World

I’ll be at Amplitudes, my subfield’s big yearly conference, next week, so I don’t have a lot to talk about. That said, I wanted to give a shout-out to my collaborator and future colleague Andrew McLeod, who is a co-author (along with Øyvind Almelid, Claude Duhr, Einan Gardi, and Chris White) on a rather cool paper that went up on arXiv this week.

Andrew and I work on “bootstrapping” calculations in quantum field theory. In particular, we start with a guess for what the result will be based on a specific set of mathematical functions (in my case, “hexagon functions” involving interactions of six particles). We then narrow things down, using other calculations that by themselves only predict part of the result, until we know the right answer. The metaphor here is that we’re “pulling ourselves up by our own bootstraps”, skipping a long calculation by essentially just guessing the answer.

This method has worked pretty well…in a toy model anyway. The calculations I’ve done with it use N=4 super Yang-Mills, a simpler cousin of the theories that describe the real world. There, fewer functions can show up, so our guess is much less unwieldy than it would be otherwise.

What’s impressive about Andrew and co.’s new paper is that they apply this method, not to N=4 super Yang-Mills, but to QCD, the theory that describes quarks and gluons in the real world. This is exactly the sort of thing I’ve been hoping to see more of, these methods built into something that can help with real, useful calculations.

Currently, what they can do is still fairly limited. For the particular problem they’re looking at, the functions required ended up being relatively simple, involving interactions between at most four particles. So far, they’ve just reproduced a calculation done by other means. Going further (more “loops”) would involve interactions between more particles, as well as mixing different types of functions (different “transcendental weight”), either of which make the problem much more complicated.

That said, the simplicity of their current calculation is also a reason to be optimistic.  Their starting “guess” had just thirteen parameters, while the one Andrew and I are working on right now (in N=4 super Yang-Mills) has over a thousand. Even if things get a lot more complicated for them at the next loop, we’ve shown that “a lot more complicated” can still be quite doable.

So overall, I’m excited. It looks like there are contexts in which one really can “bootstrap” up calculations in a realistic theory, and that’s a method that could end up really useful.

Science Never Forgets

I’ll just be doing a short post this week, I’ve been busy at a workshop on Flux Tubes here at Perimeter.

If you’ve ever heard someone tell the history of string theory, you’ve probably heard that it was first proposed not as a quantum theory of gravity, but as a way to describe the strong nuclear force. Colliders of the time had discovered particles, called mesons, that seemed to have a key role in the strong nuclear force that held protons and neutrons together. These mesons had an unusual property: the faster they spun, the higher their mass, following a very simple and regular pattern known as a Regge trajectory. Researchers found that they could predict this kind of behavior if, rather than particles, these mesons were short lengths of “string”, and with this discovery they invented string theory.

As it turned out, these early researchers were wrong. Mesons are not lengths of string, rather, they are pairs of quarks. The discovery of quarks explained how the strong force acted on protons and neutrons, each made of three quarks, and it also explained why mesons acted a bit like strings: in each meson, the two quarks are linked by a flux tube, a roughly cylindrical area filled with the gluons that carry the strong nuclear force. So rather than strings, mesons turned out to be more like bolas.

Leonin sold separately.

If you’ve heard this story before, you probably think it’s ancient history. We know about quarks and gluons now, and string theory has moved on to bigger and better things. You might be surprised to hear that at this week’s workshop, several presenters have been talking about modeling flux tubes between quarks in terms of string theory!

The thing is, science never forgets a good idea. String theory was superseded by quarks in describing the strong force, but it was only proposed in the first place because it matched the data fairly well. Now, with string theory-inspired techniques, people are calculating the first corrections to the string-like behavior of these flux tubes, comparing them with simulations of quarks and gluons, and finding surprisingly good agreement!

Science isn’t a linear story, where the past falls away to the shiny new theories of the future. It’s a marketplace. Some ideas are traded more widely, some less…but if a product works, even only sometimes, chances are someone out there will have a reason to buy it.

The Four Ways Physicists Name Things

If you’re a biologist and you discover a new animal, you’ve always got Latin to fall back on. If you’re an astronomer, you can describe what you see. But if you’re a physicist, your only option appears to involve falling back on one of a few terrible habits.

The most reasonable option is just to name it after a person. Yang-Mills and the Higgs Boson may sound silly at first, but once you know the stories of C. N. Yang, Robert Mills, Peter Higgs and Satyendra Nath Bose you start appreciating what the names mean. While this is usually the most elegant option, the increasingly collaborative nature of physics means that many things have to be named with a series of initials, like ABJM, BCJ and KKLT.

A bit worse is the tendency to just give it the laziest name possible. What do you call the particles that “glue” protons and neutrons together? Why gluons, of course, yuk yuk yuk!

This is particularly common when it comes to supersymmetry, where putting the word “super” in front of something almost always works. If that fails, it’s time to go for more specific conventions: to find the partner of an existing particle, if the new particle is a boson, just add “s-” for “super”“scalar” apparently to the name. This creates perfectly respectable names like stau, sneutrino, and selectron. If the new particle is a fermion, instead you add “-ino” to the end, getting something like a gluino if you start with a gluon. If you’ve heard of neutrinos, you may know that neutrino means “little neutral one”. You might perfectly rationally expect that gluino means “little gluon”, if you had any belief that physicists name things logically. We don’t. A gluino is called a gluino because it’s a fermion, and neutrinos are fermions, and the physicists who named it were too lazy to check what “neutrino” actually means.

Pictured: the superpartner of Nidoran?

Worse still are names that are obscure references and bad jokes. These are mercifully rare, and at least memorable when they occur. In quantum mechanics, you write down probabilities using brackets of two quantum states, \langle a | b\rangle. What if you need to separate the two states, \langle a| and |b\rangle? Then you’ve got a “bra” and a “ket”!

Or have you heard the story of how quarks were named? Quarks, for those of you unfamiliar with them, are found in protons and neutrons in groups of three. Murray Gell-Mann, one of the two people who first proposed the existence of quarks, got their name from Finnegan’s Wake, a novel by James Joyce, which at one point calls for “Three quarks for Muster Mark!” While this may at first sound like a heartwarming tale of respect for the literary classics, it should be kept in mind that a) Finnegan’s Wake is a novel composed almost entirely of gibberish, read almost exclusively by people who pretend to understand it to seem intelligent and b) this isn’t exactly the most important or memorable line in the book. So Gell-Mann wasn’t so much paying homage to a timeless work of literature as he was referencing the most mind-numbingly obscure piece of nerd trivia before the invention of Mara Jade. Luckily these days we have better ways to remember the name.

Albeit wrinklier ways.

The final, worst category, though, don’t even have good stories going for them. They are the names that tell you absolutely nothing about the thing they are naming.

Probably the worst examples of this from my experience are the a-theorem and the c-theorem. In both cases, a theory happened to have a parameter in it labeled by a letter. When a theorem was proven about that parameter, rather than giving it a name that told you anything at all about what it was, people just called it by the name of the parameter. Mathematics is full of names like this too. Without checking Wikipedia, what’s the difference between a set, a group, and a category? What the heck is a scheme?

If you ever have to name something, be safe and name it after a person. If you don’t, just try to avoid falling into these bad habits of physics naming.

What are colliders for, anyway?

Above is a thoroughly famous photo from ATLAS, one of six different particle detectors that sit around the ring of the Large Hadron Collider (or LHC for short). Forming a 26 kilometer ring spanning a chunk of southern France and Switzerland, the LHC is the biggest experiment of its kind, with the machine alone costing around 4 billion dollars.

But what is “its kind”? And why does it need to be so huge?

Aesthetics, clearly.

Explaining what a particle collider like the LHC does is actually fairly simple, if you’re prepared for some rather extreme mental images: using incredibly strong magnetic fields, the LHC accelerates protons until they’re moving at 99.9999991% of the speed of light, then lets them smash into each other in the middle of sophisticated detectors designed to observe and track everything that comes out of the collision.

That’s all well and awesome, but why do the protons need to be moving so fast? Are they really really hard to crack open, or something?

This gets at a common misunderstanding of particle physics, which I’d like to correct here.

When most people imagine what a particle collider does, they picture it smashing particles together like hollow shells, revealing the smaller particles trapped inside. You may have even heard particle colliders referred to as “atom smashers”, and if you’re used to hearing about scientists “splitting the atom”, this all makes sense: with lots of energy, atoms can be broken apart into protons and neutrons, which is what they are made of. Protons are made of quarks, and quarks were discovered using particle colliders, so the story seems to check out, right?

The thing is, lots of things have been discovered using particle colliders that definitely aren’t part of protons and neutrons. Relatives of the electron like muons and tau particles, new varieties of neutrinos, heavier quarks…pretty much the only particles that are part of protons or neutrons are the three lightest quarks (and that’s leaving aside the fact that what is or is not “part of” a proton is a complicated question in its own right).

So where do the extra particles come from? How do you crash two protons together and get something out that wasn’t in either of them?

You…throw Einstein at them?

E equals m c squared. This equation, famous to the point of cliché, is often misinterpreted. One useful way to think about it is that it describes mass as a type of energy, and clarifies how to convert between units of mass and units of energy. Then E in the equation is merely the contribution to the energy of a particle from its mass, while the full energy also includes kinetic energy, the energy of motion.

Energy is conserved, that is, cannot be created or destroyed. Mass, on the other hand, being merely one type of energy, is not necessarily conserved. The reason why mass seems to be conserved in day to day life is because it takes a huge amount of energy to make any appreciable mass: the c in m c squared is the speed of light, after all. That’s why if you’ve got a radioactive atom it will decay into lighter elements, never heavier ones.

However, this changes with enough kinetic energy. If you get something like a proton accelerated to up near the speed of light, its kinetic energy will be comparable to (or even much higher than) its mass. With that much “spare” energy, energy can transform from one form into another: from kinetic energy into mass!

Of course, it’s not quite that simple. Energy isn’t the only thing that’s conserved: so is charge, and not just electric charge, but other sorts of charge too, like the colors of quarks.  All in all, the sorts of particles that are allowed to be created are governed by the ways particles can interact. So you need not just one high energy particle, but two high energy particles interacting in order to discover new particles.

And that, in essence, is what a particle collider is all about. By sending two particles hurtling towards each other at almost the speed of light you are allowing two high energy particles to interact. The bigger the machine, the faster those particles can go, and thus the more kinetic energy is free to transform into mass. Thus the more powerful you make your particle collider, the more likely you are to see rare, highly massive particles that if left alone in nature would transform unseen into less massive particles in order to release their copious energy. By producing these massive particles inside a particle collider we can make sure they are created inside of sophisticated particle detectors, letting us observe what they turn into with precision and extrapolate what the original particles were. That’s how we found the Higgs, and it’s how we’re trying to find superpartners. It’s one of the only ways we have to answer questions about the fundamental rules that govern the universe.

Yang-Mills: Plays Well With Itself

Part Two of a Series on N=4 Super Yang-Mills Theory

This is the second in a series of articles that will explain N=4 super Yang-Mills theory. In this series I take that phrase apart bit by bit, explaining as I go. Because I’m perverse and out to confuse you, I started with the last bit here, and now I’m working my way up.

N=4 Super Yang-Mills Theory

So first these physicists expect us to accept a nonsense word like quark, and now they’re calling their theory Yang-Mills? What silly word are they going to foist on us next?

Umm…Yang and Mills are people.

Chen Ning Yang and Robert Mills were two physicists, famous for being very well treated by the Chinese government and for not being the father of nineteenth century Utilitarianism, respectively.

Has a wife 56 years younger than him

Did not design the Panopticon

In the 1950’s, Yang and Mills were faced with a problem: how to describe the strong nuclear force, the force that holds protons and neutrons in the nuclei of atoms together. At the time, the nature of this force was very mysterious. Nuclear experiments were uncovering new insight about the behavior of the strong force, but those experiments showed that the strong force didn’t behave like the well-understood force of electricity and magnetism. In particular, the strong force seemed to treat neutrons and protons in a related way, almost as if they were two sides of the same particle.

In 1954, Yang and Mills proposed a solution to this problem. In order to do so, they had to suggest something novel: a force that interacts with itself. To understand what that means and why that’s special, let’s discuss a bit about forces.

Each fundamental force can be thought of in terms of a field extending across space and time. The direction and strength of this field in each place determines which way the force pushes. When this field ripples, things that we observe as particles are created, the result of waves in the field. Particles of light, or photons, are waves in the field of the fundamental force of electricity and magnetism.

The electric force attracts charges with opposite sign, and repels charges when they have the same sign. Photons, however, have no charge, so they pass right through electric and magnetic fields. This is what I mean when I say that electricity and magnetism is a force that doesn’t interact with itself.

The strong force is different. Yang and Mills didn’t know this at the time, but we know now that the strong force acts on fundamental particles inside protons and neutrons called quarks, and that quarks come in three colors, unimaginatively named red, blue, and green, while their antiparticles are classified as antired, antiblue, or antigreen. Like all other forces, the strong force gives rise to a particle, in this case called a gluon. Unlike photons, gluons are not neutral! While they have no electric charge, they are affected by the strong force. Each gluon has a color and an anti-color: red/anti-green, blue/anti-red, etc. This means that while the strong force binds quarks together, it also binds itself together as well, keeping it from reaching outside of atoms and affecting the everyday world like electricity does.

Quarks and Gluons in a Proton

Yang and Mills’ description wasn’t perfect for the strong force (they had two types of charge rather than three) but it was fairly close to how the weak force worked, as other physicists realized in 1956. It was realized much later (in the 70’s) that a modification of Yang and Mills’ proposal worked for the strong force as well. In recognition of their insight, today the names Yang and Mills are attached to any force that interacts with itself.

A Yang-Mills theory, then, is a theory that contains a fundamental force that can interact with itself. This force generates particles (often called force-carrying bosons) which have something like charge or color with respect to the Yang-Mills force. If you remember the definition of a theory, you’ll see that we have everything we need: we have specified a particle (the force-carrying boson) and the ways in which it can interact (specifically, with itself).

Tune in next week when I explain the rest of the phrase, in a brief primer on the superheroic land of supersymmetry.