Tag Archives: history of science

The Quantum Kids

I gave a pair of public talks at the Niels Bohr International Academy this week on “The Quest for Quantum Gravity” as part of their “News from the NBIA” lecture series. The content should be familiar to long-time readers of this blog: I talked about renormalization, and gravitons, and the whole story leading up to them.

(I wanted to title the talk “How I Learned to Stop Worrying and Love Quantum Gravity”, like my blog post, but was told Danes might not get the Doctor Strangelove reference.)

I also managed to work in some history, which made its way into the talk after Poul Damgaard, the director of the NBIA, told me I should ask the Niels Bohr Archive about Gamow’s Thought Experiment Device.

“What’s a Thought Experiment Device?”

einsteinbox

This, apparently

If you’ve heard of George Gamow, you’ve probably heard of the Alpher-Bethe-Gamow paper, his work with grad student Ralph Alpher on the origin of atomic elements in the Big Bang, where he added Hans Bethe to the paper purely for an alpha-beta-gamma pun.

As I would learn, Gamow’s sense of humor was prominent quite early on. As a research fellow at the Niels Bohr Institute (essentially a postdoc) he played with Bohr’s kids, drew physics cartoons…and made Thought Experiment Devices. These devices were essentially toy experiments, apparatuses that couldn’t actually work but that symbolized some physical argument. The one I used in my talk, pictured above, commemorated Bohr’s triumph over one of Einstein’s objections to quantum theory.

Learning more about the history of the institute, I kept noticing the young researchers, the postdocs and grad students.

h155

Lev Landau, George Gamow, Edward Teller. The kids are Aage and Ernest Bohr. Picture from the Niels Bohr Archive.

We don’t usually think about historical physicists as grad students. The only exception I can think of is Feynman, with his stories about picking locks at the Manhattan project. But in some sense, Feynman was always a grad student.

This was different. This was Lev Landau, patriarch of Russian physics, crowning name in a dozen fields and author of a series of textbooks of legendary rigor…goofing off with Gamow. This was Edward Teller, father of the Hydrogen Bomb, skiing on the institute lawn.

These were the children of the quantum era. They came of age when the laws of physics were being rewritten, when everything was new. Starting there, they could do anything, from Gamow’s cosmology to Landau’s superconductivity, spinning off whole fields in the new reality.

On one level, I envy them. It’s possible they were the last generation to be on the ground floor of a change quite that vast, a shift that touched all of physics, the opportunity to each become gods of their own academic realms.

I’m glad to know about them too, though, to see them as rambunctious grad students. It’s all too easy to feel like there’s an unbridgeable gap between postdocs and professors, to worry that the only people who make it through seem to have always been professors at heart. Seeing Gamow and Landau and Teller as “quantum kids” dispels that: these are all-too-familiar grad students and postdocs, joking around in all-too-familiar ways, who somehow matured into some of the greatest physicists of their era.

Advertisements

arXiv, Our Printing Press

IMG_20160714_091400

Johannes Gutenberg, inventor of the printing press, and possibly the only photogenic thing on the Mainz campus

I’ve had a few occasions to dig into older papers recently, and I’ve noticed a trend: old papers are hard to read!

Ok, that might not be surprising. The older a paper is, the greater the chance it will use obsolete notation, or assume a context that has long passed by. Older papers have different assumptions about what matters, or what rigor requires, and their readers cared about different things. All this is to be expected: a slow, gradual approach to a modern style and understanding.

I’ve been noticing, though, that this slow, gradual approach doesn’t always hold. Specifically, it seems to speed up quite dramatically at one point: the introduction of arXiv, the website where we store all our papers.

Part of this could just be a coincidence. As it happens, the founding papers in my subfield, those that started Amplitudes with a capital “A”, were right around the time that arXiv first got going. It could be that all I’m noticing is the difference between Amplitudes and “pre-Amplitudes”, with the Amplitudes subfield sharing notation more than they did before they had a shared identity.

But I suspect that something else is going on. With arXiv, we don’t just share papers (that was done, piecemeal, before arXiv). We also share LaTeX.

LaTeX is a document formatting language, like a programming language for papers. It’s used pretty much universally in physics and math, and increasingly in other fields. As it turns out, when we post a paper to arXiv, we don’t just send a pdf: we include the raw LaTeX code as well.

Before arXiv, if you wanted to include an equation from another paper, you’d format it yourself. You’d probably do it a little differently from the other paper, in accord with your own conventions, and just to make it easier on yourself. Over time, more and more differences would crop up, making older papers harder and harder to read.

With arXiv, you can still do all that. But you can also just copy.

Since arXiv makes the LaTeX code behind a paper public, it’s easy to lift the occasional equation. Even if you’re not lifting it directly, you can see how they coded it. Even if you don’t plan on copying, the default gets flipped around: instead of having to try to make your equation like the one in the previous paper and accidentally getting it wrong, every difference is intentional.

This reminds me, in a small-scale way, of the effect of the printing press on anatomy books.

Before the printing press, books on anatomy tended to be full of descriptions, but not illustrations. Illustrations weren’t reliable: there was no guarantee the monk who copied them would do so correctly, so nobody bothered. This made it hard to tell when an anatomist (fine it was always Galen) was wrong: he could just be using an odd description. It was only after the printing press that books could actually have illustrations that were reliable across copies of a book. Suddenly, it was possible to point out that a fellow anatomist had left something out: it would be missing from the illustration!

In a similar way, arXiv seems to have led to increasingly standard notation. We still aren’t totally consistent…but we do seem a lot more consistent than older papers, and I think arXiv is the reason why.

Book Review: The Invention of Science

I don’t get a lot of time to read for pleasure these days. When I do, it’s usually fiction. But I’ve always had a weakness for stories from the dawn of science, and David Wootton’s The Invention of Science: A New History of the Scientific Revolution certainly fit the bill.

517hucfpasl-_sx329_bo1204203200_

Wootton’s book is a rambling tour of the early history of science, from Brahe’s nova in 1572 to Newton’s Optics in 1704. Tying everything together is one clear, central argument: that the scientific revolution involved, not just a new understanding of the world, but the creation of new conceptual tools. In other words, the invention of science itself.

Wootton argues this, for the most part, by tracing changes in language. Several chapters have a common structure: Wootton identifies a word, like evidence or hypothesis, that has an important role in how we talk about science. He then tracks that word back to its antecedents, showing how early scientists borrowed and coined the words they needed to describe the new type of reasoning they had pioneered.

Some of the most compelling examples come early on. Wootton points out that the word “discover” only became common in European languages after Columbus’s discovery of the new world: first in Portugese, then later in the rest of Europe. Before then, the closest term meant something more like “find out”, and was ambiguous: it could refer to finding something that was already known to others. Thus, early writers had to use wordy circumlocutions like “found out that which was not known before” to refer to genuine discovery.

The book covers the emergence of new social conventions in a similar way. For example, I was surprised to learn that the first recorded priority disputes were in the sixteenth century. Before then, discoveries weren’t even typically named for their discoverers: “the Pythagorean theorem”, oddly enough, is a name that wasn’t used until after the scientific revolution was underway. Beginning with explorers arguing over the discovery of the new world and anatomists negotiating priority for identifying the bones of the ear or the “discovery” of the clitoris, the competitive element of science began to come into its own.

Along the way, Wootton highlights episodes both familiar and obscure. You’ll find Bruno and Torricelli, yes, but also disputes over whether the seas are higher than the land or whether a weapon could cure wounds it caused via the power of magnetism. For anyone as fascinated by the emergence of science as I am, it’s a joyous wealth of detail.

If I had one complaint, it would be that for a lay reader far too much of Wootton’s book is taken up by disputes with other historians. His particular foes are relativists, though he spares some paragraphs to attack realists too. Overall, his dismissals of his opponents are so pat, and his descriptions of their views so self-evidently silly, that I can’t help but suspect that he’s not presenting them fairly. Even if he is, the discussion is rather inside baseball for a non-historian like me.

I read part of Newton’s Principia in college, and I was hoping for a more thorough discussion of Newton’s role. While he does show up, Wootton seems to view Newton as a bit of an enigma: someone who insisted on using the old language of geometric proofs while clearly mastering the new science of evidence and experiment. In this book, Newton is very much a capstone, not a focus.

Overall, The Invention of Science is a great way to learn about the twists and turns of the scientific revolution. If you set aside the inter-historian squabbling (or if you like that sort of thing) you’ll find a book brim full of anecdotes from the dawn of modern thought, and a compelling argument that what we do as scientists is neither an accident of culture nor obvious common-sense, but a hard-won invention whose rewards we are still reaping today.

Those Wacky 60’s Physicists

The 60’s were a weird time in academia. Psychologists were busy experimenting with LSD, seeing if they could convince people to electrocute each other, and otherwise doing the sorts of shenanigans that ended up saddling them with Institutional Review Boards so that nowadays they can’t even hand out surveys without a ten page form attesting that it won’t have adverse effects on pregnant women.

We don’t have IRBs in theoretical physics. We didn’t get quite as wacky as the psychologists did. But the 60’s were still a time of utopian dreams and experimentation, even in physics. We may not have done unethical experiments on people…but we did have the Analytic S-Matrix Program.

The Analytic S-Matrix Program was an attempt to rebuild quantum field theory from the ground up. The “S” in S-Matrix stands for “scattering”: the S-Matrix is an enormous matrix that tells you, for each set of incoming particles, the probability that they scatter into some new set of outgoing particles. Normally, this gets calculated piece by piece with what are called Feynman diagrams. The goal of the Analytic S-Matrix program was a loftier one: to derive the S-Matrix from first principles, without building it out of quantum field theory pieces. Without Feynman diagrams’ reliance on space and time, people like  Geoffrey Chew, Stanley Mandelstam, Tullio Regge, and Lev Landau hoped to reach a deeper understanding of fundamental physics.

If this sounds familiar, it should. Amplitudeologists like me view the physicists of the Analytic S-Matrix Program as our spiritual ancestors. Like us, they tried to skip the mess of Feynman diagrams, looking for mathematical tricks and unexpected symmetries to show them the way forward.

Unfortunately, they didn’t have the tools we do now. They didn’t understand the mathematical functions they needed, nor did they have novel ways of writing down their results like the amplituhedron. Instead, they had to work with what they knew, which in practice usually meant going back to Feynman diagrams.

Paradoxically then, much of the lasting impact of the Analytic S-Matrix Program has been on how we understand the results of Feynman diagram calculations. Just as psychologists learn about the Milgram experiment in school, we learn about Mandelstam variables and Regge trajectories. Recently, we’ve been digging up old concepts from those days and finding new applications, like the recent work on Landau singularities, or some as-yet unpublished work I’ve been doing.

Of course, this post wouldn’t be complete without mentioning the Analytic S-Matrix Program’s most illustrious child, String Theory. Some of the mathematics cooked up by the physicists of the 60’s, while dead ends for the problems they were trying to solve, ended up revealing a whole new world of potential.

The physicists of the 60’s were overly optimistic. Nevertheless, their work opened up questions that are still worth asking today. Much as psychologists can’t ignore what they got up to in the 60’s, it’s important for physicists to be aware of our history. You never know what you might dig up.

0521523362cvr.qxd (Page 1)

And as Levar Burton would say, you don’t have to take my word for it.