Tag Archives: grad school

Why Physicists Leave Physics

It’s an open secret that many physicists end up leaving physics. How many depends on how you count things, but for a representative number, this report has 31% of US physics PhDs in the private sector after one year. I’d expect that number to grow with time post-PhD. While some of these people might still be doing physics, in certain sub-fields that isn’t really an option: it’s not like there are companies that do R&D in particle physics, astrophysics, or string theory. Instead, these physicists get hired in data science, or quantitative finance, or machine learning. Others stay in academia, but stop doing physics: either transitioning to another field, or taking teaching-focused jobs that don’t leave time for research.

There’s a standard economic narrative for why this happens. The number of students grad schools accept and graduate is much higher than the number of professor jobs. There simply isn’t room for everyone, so many people end up doing something else instead.

That narrative is probably true, if you zoom out far enough. On the ground, though, the reasons people leave academia don’t feel quite this “economic”. While they might be indirectly based on a shortage of jobs, the direct reasons matter. Physicists leave physics for a wide variety of reasons, and many of them are things the field could improve on. Others are factors that will likely be present regardless of how many students graduate, or how many jobs there are. I worry that an attempt to address physics attrition on a purely economic level would miss these kinds of details.

I thought I’d talk in this post about a few reasons why physicists leave physics. Most of this won’t be new information to anyone, but I hope some of it is at least a new perspective.

First, to get it out of the way: almost no-one starts a physics PhD with the intention of going into industry. I’ve met a grand total of one person who did, and he’s rather unusual. Almost always, leaving physics represents someone’s dreams not working out.

Sometimes, that just means realizing you aren’t suited for physics. These are people who feel like they aren’t able to keep up with the material, or people who find they aren’t as interested in it as they expected. In my experience, people realize this sort of thing pretty early. They leave in the middle of grad school, or they leave once they have their PhD. In some sense, this is the healthy sort of attrition: without the ability to perfectly predict our interests and abilities, there will always be people who start a career and then decide it’s not for them.

I want to distinguish this from a broader reason to leave, disillusionment. These are people who can do physics, and want to do physics, but encounter a system that seems bent on making them do anything but. Sometimes this means disillusionment with the field itself: phenomenologists sick of tweaking models to lie just beyond the latest experimental bounds, or theorists who had hoped to address the real world but begin to see that they can’t. This kind of motivation lay behind several great atomic physicists going into biology after the second world war, to work on “life rather than death”. Sometimes instead it’s disillusionment with academia: people who have been bludgeoned by academic politics or bureaucracy, who despair of getting the academic system to care about real research or teaching instead of its current screwed-up priorities or who just don’t want to face that kind of abuse again.

When those people leave, it’s at every stage in their career. I’ve seen grad students disillusioned into leaving without a PhD, and successful tenured professors who feel like the field no longer has anything to offer them. While occasionally these people just have a difference of opinion, a lot of the time they’re pointing out real problems with the system, problems that actually should be fixed.

Sometimes, life intervenes. The classic example is the two-body problem, where you and your spouse have trouble finding jobs in the same place. There aren’t all that many places in the world that hire theoretical physicists, and still fewer with jobs open. One or both partners end up needing to compromise, and that can mean switching to a career with a bit more choice in location. People also move to take care of their parents, or because of other connections.

This seems closer to the economic picture, but I don’t think it quite lines up. Even if there were a lot fewer physicists applying for the same number of jobs, it’s still not certain that there’s a job where you want to live, specifically. You’d still end up with plenty of people leaving the field.

A commenter here frequently asks why physicists have to travel so much. Especially for a theorist, why can’t we just work remotely? With current technology, shouldn’t that be pretty easy to do?

I’ve done a lot of remote collaboration, it’s not impossible. But there really isn’t a substitute for working in the same place, for being able to meet someone in the hall and strike up a conversation around a blackboard. Remote collaborations are an ok way to keep a project going, but a rough way to start one. Institutes realize this, which is part of why most of the time they’ll only pay you a salary if they think you’re actually going to show up.

Could I imagine this changing? Maybe. The technology doesn’t exist right now, but maybe someday someone will design a social network with the right features, one where you can strike up and work on collaborations as naturally as you can in person. Then again, maybe I’m silly for imagining a technological solution to the problem in the first place.

What about more direct economic reasons? What about when people leave because of the academic job market itself?

This certainly happens. In my experience though, a lot of the time it’s pre-emptive. You’d think that people would apply for academic jobs, get rejected, and quit the field. More often, I’ve seen people notice the competition for jobs and decide at the outset that it’s not worth it for them. Sometimes this happens right out of grad school. Other times it’s later. In the latter case, these are often people who are “keeping up”, in that their career is moving roughly as fast as everyone else’s. Rather, it’s the stress, of keeping ahead of the field and marketing themselves and applying for every grant in sight and worrying that it could come crashing down any moment, that ends up too much to deal with.

What about the people who do get rejected over and over again?

Physics, like life in Jurassic Park, finds a way. Surprisingly often, these people manage to stick around. Without faculty positions they scrabble up postdoc after postdoc, short-term position after short-term position. They fund their way piece by piece, grant by grant. Often they get depressed, and cynical, and pissed off, and insist that this time they’re just going to quit the field altogether. But from what I’ve seen, once someone is that far in, they often don’t go through with it.

If fewer people went to physics grad school, or more professors were hired, would fewer people leave physics? Yes, absolutely. But there’s enough going on here, enough different causes and different motivations, that I suspect things wouldn’t work out quite as predicted. Some attrition is here to stay, some is independent of the economics. And some, perhaps, is due to problems we ought to actually solve.

Advertisements

Grad School Changes You

Occasionally, you’ll see people argue that PhD degrees are unnecessary. Sometimes they’re non-scientists who don’t know what they’re talking about, sometimes they’re Freeman Dyson.

With the wide range of arguers comes a wide range of arguments, and I don’t pretend to be able to address them all. But I do think that PhD programs, or something like them, are necessary. Grad school performs a task that almost nothing else can: it turns students into researchers.

The difference between studying a subject and researching it is a bit like the difference between swimming laps in a pool and being a fish. You can get pretty good at swimming, to the point where you can go back and forth with no real danger of screwing up. But a fish lives there.

To do research in a subject, you really have to be able to “live there”. It doesn’t have to be your whole life, or even the most important part of your life. But it has to be somewhere you’re comfortable, where you can immerse yourself and interact with it naturally. You have to have “fluency”, in the same sort of sense you can be fluent in a language. And just as you can learn a language much faster by immersion than by just taking classes, most people find it a lot easier to become a researcher if they’re in an environment built around research.

Does that have to be grad school? Not necessarily. Some people get immersed in real research from an early age (Dyson certainly fell into that category). But even (especially) for a curious person, it’s easy to get immersed in something else instead. As a kid, I would probably happily have become a Dungeons and Dragons researcher if that was a real thing.

Grad school is a choice, to immerse yourself in something specific. You want to become a physicist? You can go somewhere where everyone cares about physics. A mathematician? Same deal. They even pay you, so you don’t need to try to fit research in between a bunch of part-time jobs. They have classes for those who learn better from classes, libraries for those who learn better from books, and for those who learn from conversation you can walk down the hall, knock on a door, and learn something new. You get the opportunity to surround yourself with a topic, to work it into your bones.

And the crazy thing? It really works. You go in with a student’s knowledge of a subject, often decades out of date, and you end up giving talks in front of the world’s experts. In most cases, you end up genuinely shocked by how much you’ve changed, how much you’ve grown. I know I was.

I’m not saying that all aspects of grad school are necessary. The thesis doesn’t make sense in every field, there’s a reason why theoretical physicists usually just staple their papers together and call it a day. Different universities have quite different setups for classes and teaching experience, so it’s unlikely that there’s one true way to arrange those. Even the concept of a single advisor might be more of an administrative convenience than a real necessity. But the core idea, of a place that focuses on the transformation from student to researcher, that pays you and gives you access to what you need…I don’t think that’s something we can do without.

Tutoring at GGI

I’m still at the Galileo Galilei Institute this week, tutoring at the winter school.

At GGI’s winter school, each week is featuring a pair of lecturers. This week, the lectures alternate between Lance Dixon covering the basics of amplitudeology and Csaba Csaki, discussing ways in which the Higgs could be a composite made up of new fundamental particles.

Most of the students at this school are phenomenologists, physicists who make predictions for particle physics. I’m an amplitudeologist, I study the calculation tools behind those predictions. You’d think these would be very close areas, but it’s been interesting seeing how different our approaches really are.

Some of the difference is apparent just from watching the board. In Csaki’s lectures, the equations that show up are short, a few terms long at most. When amplitudes show up, it’s for their general properties: how many factors of the coupling constant, or the multipliers that show up with loops. There aren’t any long technical calculations, and in general they aren’t needed: he’s arguing about the kinds of physics that can show up, not the specifics of how they give rise to precise numbers.

In contrast, Lance’s board filled up with longer calculations, each with many moving parts. Even things that seem simple from our perspective take a decent amount of board space to derive, and involve no small amount of technical symbol-shuffling. For most of the students, working out an amplitude this complicated was an unfamiliar experience. There are a few applications for which you need the kind of power that amplitudeology provides, and a few students were working on them. For the rest, it was a bit like learning about a foreign culture, an exercise in understanding what other people are doing rather than picking up a new skill themselves. Still, they made a strong go at it, and it was enlightening to see the pieces that ended up mattering to them, and to hear the kinds of questions they asked.

Of Grad Students and Money

I usually avoid talking politics on this blog. In part, that’s because I usually don’t have something worth saying.

When the US House of Representatives voted on a tax bill that included a tax on grad student tuition waivers, though, I was tempted. Grad school wasn’t so long ago for me, and combining my friends’ experiences with mine I thought I knew enough for a post.

I still had questions, though. So I asked around, and tried to learn more.

In the end, the tax on tuition waivers was dropped from the bill. I’m not going to comment on the rest of the bill, I really don’t have any relevant expertise there.

I do want to say a bit about what I learned, though.

First, the basics:

In the US, PhD students don’t typically pay tuition. Instead, they get paid a stipend, which gets taxed just like any other income. In exchange, they work for their department at the university, as Teaching Assistants and Research Assistants.

PhD tuition isn’t zero, though. Their tuition (often comparable to undergraduate tuition at the same university) is waived, but someone still pays it. Sometimes that “someone” is the department, paying tuition alongside wages as part of the cost of a Teaching Assistant. Sometimes it’s a grant held by a professor, as part of the cost of that professor hiring a Research Assistant. Sometimes it’s another organization: the National Science Foundation or the Fulbright Program, paying for a student who showed their worth in an application process.

 

My first question, then, was this: what determines PhD student tuition?

I know a fair number of professors, many of whom have worked with university administrations, so I thought this would be simple to answer. Then I started asking people, and everyone I asked said something different.

Some thought it was mostly set by comparing to other universities. Others had the impression it was tied to undergrad tuition, that the university had a standard price it charges per course. Others pointed out that at many places, the cost of funding a grad student is the same as the cost of a postdoc. Since postdoc salaries are at least somewhat competitive, this implies that the total of grad student tuition plus stipend is set by the postdoc market, and then the university takes as much of it for tuition as they can before the stipend becomes unreasonably low.

What no one claimed, even after I asked them directly, was that grad student tuition represented the cost of educating a grad student. Grad education does cost money, in professor salaries and campus resources. But I couldn’t find anyone who would claim that this cost was anywhere near what universities charged in PhD tuition.

Rather, grad tuition seems to be part of the bulk of mysterious “overhead” that universities take out of grants. “Overhead” varies from grant to grant and situation to situation, with universities taking less out of some places and more out of others. Either way, it isn’t really overhead in the conventional sense: rather than being the cost to the university of administering that grant or educating that grad student, it’s treated as a source of money for the university to funnel elsewhere, to fund everything else they do.

 

If grad tuition waivers had ended up taxed, couldn’t universities just pay their grad students’ tuition some other way?

Yes, but you probably wouldn’t like it.

Waiving tuition is only one way to let grad students go tuition-free. Another way, which would not have been taxed under the proposed bill, is scholarships.

There are already some US universities that cover grad student tuition with scholarships, and I get the impression it’s a common setup in Canada. But from what I’ve seen, it doesn’t work very well.

The problem, as far as I can tell, is that once a university decides that something is a “scholarship”, it wants to pay it like a scholarship. For some reason, this appears to mean randomly, over the course of the year, rather than at the beginning of the year. This isn’t a huge problem when it’s just tuition, since usually universities are sensible enough to wait until you’ve gotten your scholarship to charge you. But often, universities that are already covering tuition with a scholarship will cover a significant chunk of stipend with it too.

The end result, as I’ve seen happen in several places, is that students show up and are told they’ll be paid a particular stipend. They sign rental contracts, they make plans assuming that money will be there. And then several months pass, and it turns out most of the stipend they were promised is a “scholarship”, and that scholarship won’t actually be paid until the university feels like it. So for the first few months, those students have to hope they have forgiving landlords, because it’s not like they can get the university to pay them on time just because they said they were going to.

 

Of course, I should mention that even without scholarships, there are universities that pay their students late, which leads into my overall point: this system is a huge mess. Grad students are in a weird in-between place, treated like employees part of the time and students part of the time, with the actual rationale in each case frustratingly opaque. In some places, with attentive departments or savvy grad student unions, the mess gets kept to a minimum. Others aren’t so lucky. What’s worse is that this kind of system is often the sort where, if you put it under any pressure, it shuffles the problem around until it ends up with someone who can’t complain. And chances are, that person is a grad student.

I don’t know how to fix this. It seems like the sort of thing where you have to just reform the system all in one go, in a way that takes everything into account. I don’t know of any proposed plans that do that.

 

One final note: I usually have a ban on politics in the comments. That would be more than a little hypocritical to enforce here. I’d still like to prevent the more vicious arguments, to keep the discussion civil and informative. As such, the following rules are intended as conversational speed bumps, with the hope that in writing around them you take a bit more time to think about what you have to say.

For the comments here, please: do not mention specific politicians, political parties, or ideologies. Please avoid personal insults, especially towards your fellow commenters. Please try to avoid speculation about peoples’ motives, and focus as much as possible on specifics: specific experiences you’ve had, specific rules and regulations, specific administrative practices, specific economic studies. If at all possible, try to inform, not just vent, and maybe we can learn something from each other.

Thoughts on Polchinski’s Memoir

I didn’t get a chance to meet Joseph Polchinski when I was visiting Santa Barbara last spring. At the time, I heard his health was a bit better, but he still wasn’t feeling well enough to come in to campus. Now that I’ve read his memoir, I almost feel like I have met him. There’s a sense of humor, a diffidence, and a passion for physics that shines through the pages.

The following are some scattered thoughts inspired by the memoir:

 

A friend of mine once complained to me that in her field grad students all brag about the colleges they went to. I mentioned that in my field your undergrad never comes up…unless it was Caltech. For some reason, everyone I’ve met who went to Caltech is full of stories about the place, and Polchinski is no exception. Speaking as someone who didn’t go there, it seems like Caltech has a profound effect on its students that other places don’t.

 

Polchinski mentions hearing stories about geniuses of the past, and how those stories helped temper some of his youthful arrogance. There’s an opposite effect that’s also valuable: hearing stories like Polchinski’s, his descriptions of struggling with anxiety and barely publishing and “not really accomplishing anything” till age 40, can be a major comfort to those of us who worry we’ve fallen behind in the academic race. That said, it’s important not to take these things too far: times have changed, you’re not Polchinski, and much like his door-stealing trick at Caltech getting a postdoc without any publications is something you shouldn’t try at home. Even Witten’s students need at least one.

 

Last week I was a bit puzzled by nueww’s comment, a quote from Polchinski’s memoir which distinguishes “math of the equations” from “math of the solutions”, attributing the former to physicists and the latter to mathematicians. Reading the context in the memoir and the phrase’s origin in a remark by Susskind cleared up a bit, but still left me uneasy. I only figured out why after Lubos Motl posted about it: it doesn’t match my experience of mathematicians at all!

If anything, I think physicists usually care more about the “solutions” than mathematicians do. In my field, often a mathematician will construct some handy basis of functions and then frustrate everyone by providing no examples of how to use them. In the wider math community I’ve met graph theorists who are happy to prove something is true for all graphs of size 10^{10^10} and larger, not worrying about the vast number of graphs where it fails because it’s just a finite number of special cases. And I don’t think this is just my experience: a common genre of jokes revolve around mathematicians proving a solution exists and then not bothering to do anything with it (for example, see the joke with the hotel fire here).

I do think there’s a meaningful sense in which mathematicians care about details that we’re happy to ignore, but “solutions” versus “equations” isn’t really the right axis. It’s something more like “rigor” versus “principles”. Mathematicians will often begin a talk by defining a series of maps between different spaces, carefully describing where they are and aren’t valid. A physicist might just write down a function. That sort of thing is dangerous in mathematics: there are always special, pathological cases that make careful definitions necessary. In physics, those cases rarely come up, and when they do there’s often a clear physical problem that brings them to the forefront. We have a pretty good sense of when we need rigor, and when we don’t we’re happy to lay things out without filling in the details, putting a higher priority on moving forward and figuring out the basic principles underlying reality.

 

Polchinski talks a fair bit about his role in the idea of the multiverse, from hearing about Weinberg’s anthropic argument to coming to terms with the string landscape. One thing his account makes clear is how horrifying the concept seemed at first: how the idea that the parameters of our universe might just be random could kill science and discourage experimentalists. This touches on something that I think gets lost in arguments about the multiverse: even the people most involved in promoting the multiverse in public aren’t happy about it.

It also sharpened my thinking about the multiverse a bit. I’ve talked before about how I don’t think the popularity of the multiverse is actually going to hurt theoretical physics as a field. Polchinski’s worries made me think about the experimental side of the equation: why do experiments if the world might just be random? I think I have a clearer answer to this now, but it’s a bit long, so I’ll save it for a future post.

 

One nice thing about these long-term accounts is you get to see how much people shift between fields over time. Polchinski didn’t start out working in string theory, and most of the big names in my field, like Lance Dixon and David Kosower, didn’t start out in scattering amplitudes. Academic careers are long, and however specialized we feel at any one time we can still get swept off in a new direction.

 

I’m grateful for this opportunity to “meet” Polchinski, if only through his writing. His is a window on the world of theoretical physics that is all too rare, and valuable as a result.

Where Grants Go on the Ground

I’ve seen several recent debates about grant funding, arguments about whether this or that scientist’s work is “useless” and shouldn’t get funded. Wading into the specifics is a bit more political than I want to get on this blog right now, and if you’re looking for a general defense of basic science there are plenty to choose from. I’d like to focus on a different part, one where I think the sort of people who want to de-fund “useless” research are wildly overoptimistic.

People who call out “useless” research act as if government science funding works in a simple, straightforward way: scientists say what they want to work on, the government chooses which projects it thinks are worth funding, and the scientists the government chooses get paid.

This may be a (rough) picture of how grants are assigned. For big experiments and grants with very specific purposes, it’s reasonably accurate. But for the bulk of grants distributed among individual scientists, it ignores what happens to the money on the ground, after the scientists get it.

The simple fact of the matter is that what a grant is “for” doesn’t have all that much influence on what it gets spent on. In most cases, scientists work on what they want to, and find ways to pay for it.

Sometimes, this means getting grants for applied work, doing some of that, but also fitting in more abstract theoretical projects during downtime. Sometimes this means sharing grant money, if someone has a promising grad student they can’t fund at the moment and needs the extra help. (When I first got research funding as a grad student, I had to talk to the particle physics group’s secretary, and I’m still not 100% sure why.) Sometimes this means being funded to look into something specific and finding a promising spinoff that takes you in an entirely different direction. Sometimes you can get quite far by telling a good story, like a mathematician I know who gets defense funding to study big abstract mathematical systems because some related systems happen to have practical uses.

Is this unethical? Some of it, maybe. But from what I’ve seen of grant applications, it’s understandable.

The problem is that if scientists are too loose with what they spend grant money on, grant agency asks tend to be far too specific. I’ve heard of grants that ask you to give a timeline, over the next five years, of each discovery you’re planning to make. That sort of thing just isn’t possible in science: we can lay out a rough direction to go, but we don’t know what we’ll find.

The end result is a bit like complaints about job interviews, where everyone is expected to say they love the company even though no-one actually does. It creates an environment where everyone has to twist the truth just to keep up with everyone else.

The other thing to keep in mind is that there really isn’t any practical way to enforce any of this. Sure, you can require receipts for equipment and the like, but once you’re paying for scientists’ time you don’t have a good way to monitor how they spend it. The best you can do is have experts around to evaluate the scientists’ output…but if those experts understand enough to do that, they’re going to be part of the scientific community, like grant committees usually already are. They’ll have the same expectations as the scientists, and give similar leeway.

So if you want to kill off some “useless” area of research, you can’t do it by picking and choosing who gets grants for what. There are advocates of more drastic actions of course, trying to kill whole agencies or fields, and that’s beyond the scope of this post. But if you want science funding to keep working the way it does, and just have strong opinions about what scientists should do with it, then calling out “useless” research doesn’t do very much: if the scientists in question think it’s useful, they’ll find a way to keep working on it. You’ve slowed them down, but you’ll still end up paying for research you don’t like.

Final note: The rule against political discussion in the comments is still in effect. For this post, that means no specific accusations of one field or another as being useless, or one politician/political party/ideology or another of being the problem here. Abstract discussions and discussions of how the grant system works should be fine.

PSI Winter School 2017

It’s that time of year again! Perimeter Scholars International, Perimeter’s Master’s program in theoretical physics, is holding its Winter School up in Ontario’s copious backwoods.

img_20170125_161426

Ominous antlered snowmen included

Like last year, the students are spending mornings and evenings doing research supervised by PI grad students, postdocs, and faculty, and the afternoons on a variety of winter activities, including skiing and snowshoeing.

Last year, my group worked on the “POPE”, a proposal by Basso, Sever, and Vieira, and we ended up getting a paper out of it. This year, I’ve teamed up with Freddy Cachazo on a gravity-related project. We’ve got a group of enthusiastic students and are making decent progress, I’ll have more to say about it next week.