Tag Archives: DoingScience

Visiting LBNL

I’ve been traveling this week, giving a talk at Lawrence Berkeley National Laboratory, so this will be a short post.

In my experience, most non-scientists don’t know about the national labs. In the US, the majority of scientists work for universities, but a substantial number work at one of the seventeen national labs overseen by the Department of Energy. It’s a good gig, if you can get it: no teaching duties, and a fair amount of freedom in what you research.

Each lab has its own focus, and its own culture. In the past I’ve spent a lot of time at SLAC, which runs a particle accelerator near Stanford (among other things). Visiting LBNL, I was amused by some of the differences. At SLAC, the guest rooms have ads for Stanford-branded bed covers. LBNL, meanwhile, brags about its beeswax-based toiletries in recyclable cardboard bottles. SLAC is flat, spread out, and fairly easy to navigate. LBNL is a maze of buildings arranged in tight terraces on a steep hill.

240px-rivendell_illustration

I forgot to take a picture, but someone appears to have drawn one.

While the differences were amusing, physicists are physicists everywhere. It was nice to share my work with people who mostly hadn’t heard about it before, and to get an impression of what they were working on.

PSI Winter School 2017

It’s that time of year again! Perimeter Scholars International, Perimeter’s Master’s program in theoretical physics, is holding its Winter School up in Ontario’s copious backwoods.

img_20170125_161426

Ominous antlered snowmen included

Like last year, the students are spending mornings and evenings doing research supervised by PI grad students, postdocs, and faculty, and the afternoons on a variety of winter activities, including skiing and snowshoeing.

Last year, my group worked on the “POPE”, a proposal by Basso, Sever, and Vieira, and we ended up getting a paper out of it. This year, I’ve teamed up with Freddy Cachazo on a gravity-related project. We’ve got a group of enthusiastic students and are making decent progress, I’ll have more to say about it next week.

Next Year in Copenhagen!

As some of you might be aware, this is my last year at the Perimeter Institute. It’s been great, but the contract was only for three years, and come August I’ll be heading elsewhere.

Determining that “elsewhere” was the subject of an extensive job search. Now that the search has resolved, I can tell you that “elsewhere” is the Niels Bohr International Academy at the Niels Bohr Institute in Copenhagen, where I’ll be starting a three-year postdoc job in the fall.

blegdamsvej_forside

Probably in the building on the left

There are some pretty stellar amplitudes people at NBIA, so I’m pretty excited to be going there. It’s going to be a great opportunity to both build on what I’ve been doing and expand beyond. They’re also hiring several other amplitudes-focused postdocs this year, so overall it should be a really fun group.

It’s also a bit daunting. Moving to Canada from the US was reasonably smooth, I could drive most of my things over in a U-Haul truck. Moving to Denmark is going to be quite a bit more complicated. I’ll need to learn a new language and get used to a fairly different culture.

I can take solace in the fact that in some sense I’m retracing my great-grandfather’s journey in the opposite direction. My great-grandfather worked at the Niels Bohr Institute on his way out of Europe in the 1930’s, and made friends with the Bohrs along the way, before coming to the US. I’ll get a chance to explore a piece of family history, and likely collaborate with a Bohr as well.

Hexagon Functions Meet the Amplituhedron: Thinking Positive

I finished a new paper recently, it’s up on arXiv now.

This time, we’re collaborating with Jaroslav Trnka, of Amplituhedron fame, to investigate connections between the Amplituhedron and our hexagon function approach.

The Amplituhedron is a way to think about scattering amplitudes in our favorite toy model theory, N=4 super Yang-Mills. Specifically, it describes amplitudes as the “volume” of some geometric space.

Here’s something you might expect: if something is a volume, it should be positive, right? You can’t have a negative amount of space. So you’d naturally guess that these scattering amplitudes, if they’re really the “volume” of something, should be positive.

“Volume” is in quotation marks there for a reason, though, because the real story is a bit more complicated. The Amplituhedron isn’t literally the volume of some space, there are a bunch of other mathematical steps between the geometric story of the Amplituhedron on the one end and the final amplitude on the other. If it was literally a volume, calculating it would be quite a bit easier: mathematicians have gotten very talented at calculating volumes. But if it was literally a volume, it would have to be positive.

What our paper demonstrates is that, in the right regions (selected by the structure of the Amplituhedron), the amplitudes we’ve calculated so far are in fact positive. That first, basic requirement for the amplitude to actually literally be a volume is satisfied.

Of course, this doesn’t prove anything. There’s still a lot of work to do to actually find the thing the amplitude is the volume of, and this isn’t even proof that such a thing exists. It’s another, small piece of evidence. But it’s a reassuring one, and it’s nice to begin to link our approach with the Amplituhedron folks.

This week was the 75th birthday of John Schwarz, one of the founders of string theory and a discoverer of N=4 super Yang-Mills. We’ve dedicated the paper to him. His influence on the field, like the amplitudes of N=4 themselves, has been consistently positive.

Four Gravitons in China

I’m in China this week, at the School and Workshop on Amplitudes in Beijing 2016.

img_20161018_085714

It’s a little chilly this time of year, so the dragons have accessorized

A few years back, I mentioned that there didn’t seem to be many amplitudeologists in Asia. That’s changed quite a lot over just the last few years. Song He and Yu-tin Huang went from postdocs in the west to faculty positions in China and Taiwan, respectively, while Bo Feng’s group in China has expanded. As a consequence, there’s now a substantial community here. This is the third “Amplitudes in Asia” conference, with past years meeting in Hong Kong and Taipei.

The “school” part of the conference was last week. I wasn’t here, but the students here seem to have enjoyed it a lot. This week is the “workshop” part, and there have been talks on a variety of parts of amplitudes. Nima showed up on Wednesday and managed to talk for his usual impressively long amount of time, finishing with a public lecture about the future of physics. The talk was ostensibly about why China should build the next big collider, but for the most part it ended up as a more general talk about exciting open questions in high energy physics. The talks were recorded, so they should be online at some point.

Jury-Rigging: The Many Uses of Dropbox

I’ll be behind the Great Firewall of China next week, so I’ve been thinking about various sites I won’t be able to access. Prominent among them is Dropbox, a service that hosts files online.

250px-dropbox_icon-svg

A helpful box to drop things in

What do physicists do with Dropbox? Quite a lot.

For us, Dropbox is a great way to keep collaborations on the same page. By sharing a Dropbox folder, we can share research programs, mathematical expressions, and paper drafts. It makes it a lot easier to keep one consistent version of a document between different people, and it’s a lot simpler than emailing files back and forth.

All that said, Dropbox has its drawbacks. You still need to be careful not to have two people editing the same thing at the same time, lest one overwrite the other’s work. You’ve got the choice between editing in place, making everyone else receive notifications whenever the files change, or editing in a separate folder, and having to be careful to keep it coordinated with the shared one.

Programmers will know there are cleaner solutions to these problems. GitHub is designed to share code, and you can work together on a paper with ShareLaTeX. So why do we use Dropbox?

Sometimes, it’s more important for a tool to be easy and universal, even if it doesn’t do everything you want. GitHub and ShareLaTeX might solve some of the problems we have with Dropbox, but they introduce extra work too. Because no one disadvantage of Dropbox takes up too much time, it’s simpler to stick with it than to introduce a variety of new services to fill the same role.

This is the source of a lot of jury-rigging in science. Our projects aren’t often big enough to justify more professional approaches: usually, something hacked together out of what’s available really is the best choice.

For one, it’s why I use wordpress. WordPress.com is not a great platform for professional blogging: it doesn’t give you a lot of control without charging, and surprise updates can make using it confusing. However, it takes a lot less effort than switching to something more professional, and for the moment at least I’m not really in a position that justifies the extra work.

The Parable of the Entanglers and the Bootstrappers

There’s been some buzz around a recent Quanta article by K. C. Cole, The Strange Second Life of String Theory. I found it a bit simplistic of a take on the topic, so I thought I’d offer a different one.

String theory has been called the particle physicist’s approach to quantum gravity. Other approaches use the discovery of general relativity as a model: they’re looking for a big conceptual break from older theories. String theory, in contrast, starts out with a technical problem (naive quantum gravity calculations that give infinity) proposes physical objects that could solve the problem (strings, branes), and figures out which theories of these objects are consistent with existing data (originally the five superstring theories, now all understood as parts of M theory).

That approach worked. It didn’t work all the way, because regardless of whether there are indirect tests that can shed light on quantum gravity, particle physics-style tests are far beyond our capabilities. But in some sense, it went as far as it can: we’ve got a potential solution to the problem, and (apart from some controversy about the cosmological constant) it looks consistent with observations. Until actual evidence surfaces, that’s the end of that particular story.

When people talk about the failure of string theory, they’re usually talking about its aspirations as a “theory of everything”. String theory requires the world to have eleven dimensions, with seven curled up small enough that we can’t observe them. Different arrangements of those dimensions lead to different four-dimensional particles. For a time, it was thought that there would be only a few possible arrangements: few enough that people could find the one that describes the world and use it to predict undiscovered particles.

That particular dream didn’t work out. Instead, it became apparent that there were a truly vast number of different arrangements of dimensions, with no unique prediction likely to surface.

By the time I took my first string theory course in grad school, all of this was well established. I was entering a field shaped by these two facts: string theory’s success as a particle-physics style solution to quantum gravity, and its failure as a uniquely predictive theory of everything.

The quirky thing about science: sociologically, success and failure look pretty similar. Either way, it’s time to find a new project.

A colleague of mine recently said that we’re all either entanglers or bootstrappers. It was a joke, based on two massive grants from the Simons Foundation. But it’s also a good way to summarize two different ways string theory has moved on, from its success and from its failure.

The entanglers start from string theory’s success and say, what’s next?

As it turns out, a particle-physics style understanding of quantum gravity doesn’t tell you everything you need to know. Some of the big conceptual questions the more general relativity-esque approaches were interested in are still worth asking. Luckily, string theory provides tools to answer them.

Many of those answers come from AdS/CFT, the discovery that string theory in a particular warped space-time is dual (secretly the same theory) to a more particle-physics style theory on the edge of that space-time. With that discovery, people could start understanding properties of gravity in terms of properties of particle-physics style theories. They could use concepts like information, complexity, and quantum entanglement (hence “entanglers”) to ask deeper questions about the structure of space-time and the nature of black holes.

The bootstrappers, meanwhile, start from string theory’s failure and ask, what can we do with it?

Twisting up the dimensions of string theory yields a vast number of different arrangements of particles. Rather than viewing this as a problem, why not draw on it as a resource?

“Bootstrappers” explore this space of particle-physics style theories, using ones with interesting properties to find powerful calculation tricks. The name comes from the conformal bootstrap, a technique that finds conformal theories (roughly: theories that are the same at every scale) by “pulling itself by its own boostraps”, using nothing but a kind of self-consistency.

Many accounts, including Cole’s, attribute people like the boostrappers to AdS/CFT as well, crediting it with inspiring string theorists to take a closer look at particle physics-style theories. That may be true in some cases, but I don’t think it’s the whole story: my subfield is bootstrappy, and while it has drawn on AdS/CFT that wasn’t what got it started. Overall, I think it’s more the case that the tools of string theory’s “particle physics-esque approach”, like conformal theories and supersymmetry, ended up (perhaps unsurprisingly) useful for understanding particle physics-style theories.

Not everyone is a “boostrapper” or an “entangler”, even in the broad sense I’m using the words. The two groups also sometimes overlap. Nevertheless, it’s a good way to think about what string theorists are doing these days. Both of these groups start out learning string theory: it’s the only way to learn about AdS/CFT, and it introduces the bootstrappers to a bunch of powerful particle physics tools all in one course. Where they go from there varies, and can be more or less “stringy”. But it’s research that wouldn’t have existed without string theory to get it started.