Assumptions for Naturalness

Why did physicists expect to see something new at the LHC, more than just the Higgs boson? Mostly, because of something called naturalness.

Naturalness, broadly speaking, is the idea that there shouldn’t be coincidences in physics. If two numbers that appear in your theory cancel out almost perfectly, there should be a reason that they cancel. Put another way, if your theory has a dimensionless constant in it, that constant should be close to one.

(To see why these two concepts are the same, think about a theory where two large numbers miraculously almost cancel, leaving just a small difference. Take the ratio of one of those large numbers to the difference, and you get a very large dimensionless number.)

You might have heard it said that the mass of the Higgs boson is “unnatural”. There are many different physical processes that affect what we measure as the mass of the Higgs. We don’t know exactly how big these effects are, but we do know that they grow with the scale of “new physics” (aka the mass of any new particles we might have discovered), and that they have to cancel to give the Higgs mass we observe. If we don’t see any new particles, the Higgs mass starts looking more and more unnatural, driving some physicists to the idea of a “multiverse”.

If you find parts of this argument hokey, you’re not alone. Critics of naturalness point out that we don’t really have a good reason to favor “numbers close to one”, nor do we have any way to quantify how “bad” a number far from one is (we don’t know the probability distribution, in other words). They critique theories that do preserve naturalness, like supersymmetry, for being increasingly complicated and unwieldy, violating Occam’s razor. And in some cases they act baffled by the assumption that there should be any “new physics” at all.

Some of these criticisms are reasonable, but some are distracting and off the mark. The problem is that the popular argument for naturalness leaves out some important assumptions. These assumptions are usually kept in mind by the people arguing for naturalness (at least the more careful people), but aren’t often made explicit. I’d like to state some of these assumptions. I’ll be framing the naturalness argument in a bit of an unusual (if not unprecedented) way. My goal is to show that some criticisms of naturalness don’t really work, while others still make sense.

I’d like to state the naturalness argument as follows:

  1. The universe should be ultimately described by a theory with no free dimensionless parameters at all. (For the experts: the theory should also be UV-finite.)
  2. We are reasonably familiar with theories of the sort described in 1., we know roughly what they can look like.
  3. If we look at such a theory at low energies, it will appear to have dimensionless parameters again, based on the energy where we “cut off” our description. We understand this process well enough to know what kinds of values these parameters can take, starting from 2.
  4. Point 3. can only be consistent with the observed mass of the Higgs if there is some “new physics” at around the scales the LHC can measure. That is, there is no known way to start with a theory like those of 2. and get the observed Higgs mass without new particles.

Point 1. is often not explicitly stated. It’s an assumption, one that sits in the back of a lot of physicists’ minds and guides their reasoning. I’m really not sure if I can fully justify it, it seems like it should be a consequence of what a final theory is.

(For the experts: you’re probably wondering why I’m insisting on a theory with no free parameters, when usually this argument just demands UV-finiteness. I demand this here because I think this is the core reason why we worry about coincidences: free parameters of any intermediate theory must eventually be explained in a theory where those parameters are fixed, and “unnatural” coincidences are those we don’t expect to be able to fix in this way.)

Point 2. may sound like a stretch, but it’s less of one than you might think. We do know of a number of theories that have few or no dimensionless parameters (and that are UV-finite), they just don’t describe the real world. Treating these theories as toy models, we can hopefully get some idea of how theories like this should look. We also have a candidate theory of this kind that could potentially describe the real world, M theory, but it’s not fleshed out enough to answer these kinds of questions definitively at this point. At best it’s another source of toy models.

Point 3. is where most of the technical arguments show up. If someone talking about naturalness starts talking about effective field theory and the renormalization group, they’re probably hashing out the details of point 3. Parts of this point are quite solid, but once again there are some assumptions that go into it, and I don’t think we can say that this point is entirely certain.

Once you’ve accepted the arguments behind points 1.-3., point 4. follows. The Higgs is unnatural, and you end up expecting new physics.

Framed in this way, arguments about the probability distribution of parameters are missing the point, as are arguments from Occam’s razor.

The point is not that the Standard Model has unlikely parameters, or that some in-between theory has unlikely parameters. The point is that there is no known way to start with the kind of theory that could be an ultimate description of the universe and end up with something like the observed Higgs and no detectable new physics. Such a theory isn’t merely unlikely, if you take this argument seriously it’s impossible. If your theory gets around this argument, it can be as cumbersome and Occam’s razor-violating as it wants, it’s still a better shot than no possible theory at all.

In general, the smarter critics of naturalness are aware of this kind of argument, and don’t just talk probabilities. Instead, they reject some combination of point 2. and point 3.

This is more reasonable, because point 2. and point 3. are, on some level, arguments from ignorance. We don’t know of a theory with no dimensionless parameters that can give something like the Higgs with no detectable new physics, but maybe we’re just not trying hard enough. Given how murky our understanding of M theory is, maybe we just don’t know enough to make this kind of argument yet, and the whole thing is premature. This is where probability can sneak back in, not as some sort of probability distribution on the parameters of physics but just as an estimate of our own ability to come up with new theories. We have to guess what kinds of theories can make sense, and we may well just not know enough to make that guess.

One thing I’d like to know is how many critics of naturalness reject point 1. Because point 1. isn’t usually stated explicitly, it isn’t often responded to explicitly either. The way some critics of naturalness talk makes me suspect that they reject point 1., that they honestly believe that the final theory might simply have some unexplained dimensionless numbers in it that we can only fix through measurement. I’m curious whether they actually think this, or whether I’m misreading them.

There’s a general point to be made here about framing. Suppose that tomorrow someone figures out a way to start with a theory with no dimensionless parameters and plausibly end up with a theory that describes our world, matching all existing experiments. (People have certainly been trying.) Does this mean naturalness was never a problem after all? Or does that mean that this person solved the naturalness problem?

Those sound like very different statements, but it should be clear at this point that they’re not. In principle, nothing distinguishes them. In practice, people will probably frame the result one way or another based on how interesting the solution is.

If it turns out we were missing something obvious, or if we were extremely premature in our argument, then in some sense naturalness was never a real problem. But if we were missing something subtle, something deep that teaches us something important about the world, then it should be fair to describe it as a real solution to a real problem, to cite “solving naturalness” as one of the advantages of the new theory.

If you ask for my opinion? You probably shouldn’t, I’m quite far from an expert in this corner of physics, not being a phenomenologist. But if you insist on asking anyway, I suspect there probably is something wrong with the naturalness argument. That said, I expect that whatever we’re missing, it will be something subtle and interesting, that naturalness is a real problem that needs to really be solved.

Advertisements

A Newtonmas Present of Internet Content

I’m lazy this Newtonmas, so instead of writing a post of my own I’m going to recommend a few other people who do excellent work.

Quantum Frontiers is a shared blog updated by researchers connected to Caltech’s Institute for Quantum Information and Matter. While the whole blog is good, I’m going to be more specific and recommend the posts by Nicole Yunger Halpern. Nicole is really a great writer, and her posts are full of vivid imagery and fun analogies. If she’s not as well-known, it’s only because she lacks the attention-grabbing habit of getting into stupid arguments with other bloggers. Definitely worth a follow.

Recommending Slate Star Codex feels a bit strange, because it seems like everyone I’ve met who would enjoy the blog already reads it. It’s not a physics blog by any stretch, so it’s also an unusual recommendation to give here. Slate Star Codex writes about a wide variety of topics, and while the author isn’t an expert in most of them he does a lot more research than you or I would. If you’re interested in up-to-date meta-analyses on psychology, social science, and policy, pored over by someone with scrupulous intellectual honesty and an inexplicably large amount of time to indulge it, then Slate Star Codex is the blog for you.

I mentioned Piled Higher and Deeper a few weeks back, when I reviewed the author’s popular science book We Have No Idea. Piled Higher and Deeper is a webcomic about life in grad school. Humor is all about exaggeration, and it’s true that Piled Higher and Deeper exaggerates just how miserable and dysfunctional grad school can be…but not by as much as you’d think. I recommend that anyone considering grad school read Piled Higher and Deeper, and take it seriously. Grad school can really be like that, and if you don’t think you can deal with spending five or six years in the world of that comic you should take that into account.

This Week, at Scientific American

I’ve written an article for Scientific American! It went up online this week, the print versions go out on the 25th. The online version is titled “Loopy Particle Math”, the print one is “The Particle Code”, but they’re the same article.

For those who don’t subscribe to Scientific American, sorry about the paywall!

“The Particle Code” covers what will be familiar material to regulars on this blog. I introduce Feynman diagrams, and talk about the “amplitudeologists” who try to find ways around them. I focus on my corner of the amplitudes field, how the work of Goncharov, Spradlin, Vergu, and Volovich introduced us to “symbology”, a set of tricks for taking apart more complicated integrals (or “periods”) into simple logarithmic building blocks. I talk about how my collaborators and I use symbology, using these building blocks to compute amplitudes that would have been impossible with other techniques. Finally, I talk about the frontier of the field, the still-mysterious “elliptic polylogarithms” that are becoming increasingly well-understood.

(I don’t talk about the even more mysterious “Calabi-Yau polylogarithms“…another time for those!)

Working with Scientific American was a fun experience. I got to see how the professionals do things. They got me to clarify and explain, pointing out terms I needed to define and places I should pause to summarize. They took my rough gel-pen drawings and turned them into polished graphics. While I’m still a little miffed about them removing all the contractions, overall I learned a lot, and I think they did a great job of bringing the article to the printed page.

Interdisciplinarity Is Good for the Soul

Interdisciplinary research is trendy these days. Grant agencies love it, for one. But talking to people in other fields isn’t just promoted by the authorities: like eating your vegetables, it’s good for you too.

If you talk only to people from your own field, you can lose track of what matters in the wider world. There’s a feedback effect where everyone in a field works on what everyone else in the field finds interesting, and the field spirals inward. “Interesting” starts meaning what everyone else is working on, without fulfilling any other criteria. Interdisciplinary contacts hold that back: not only can they call bullshit when you’re deep in your field’s arcane weirdness, they can also point out things that are more interesting than you expected, ideas that your field has seen so often they look boring but that are actually more surprising or useful than you realize.

Interdisciplinary research is good for self-esteem, too. As a young researcher, you can easily spend all your time talking to people who know more about your field than you do. Branching out reminds you of how much you’ve learned: all that specialized knowledge may be entry-level in your field, but it still puts you ahead of the rest of the world. Even as a grad student, you can be someone else’s guest expert if the right topic comes up.

Book Review: We Have No Idea

I have no idea how I’m going to review this book.

Ok fine, I have some idea.

Jorge Cham writes Piled Higher and Deeper, a webcomic with possibly the most accurate depiction of grad school available. Daniel Whiteson is a professor at the University of California, Irvine, and a member of the ATLAS collaboration (one of the two big groups that make measurements at the Large Hadron Collider). Together, they’ve written a popular science book covering everything we don’t know about fundamental physics.

Writing a book about what we don’t know is an unusual choice, and there was a real risk it would end up as just a superficial gimmick. The pie chart on the cover presents the most famous “things physicists don’t know”, dark matter and dark energy. If they had just stuck to those this would have been a pretty ordinary popular physics book.

Refreshingly, they don’t do that. After blazing through dark matter and dark energy in the first three chapters, the rest of the book focuses on a variety of other scientific mysteries.

The book contains a mix of problems that get serious research attention (matter-antimatter asymmetry, high-energy cosmic rays) and more blue-sky “what if” questions (does matter have to be made out of particles?). As a theorist, I’m not sure that all of these questions are actually mysterious (we do have some explanation of the weird “1/3” charges of quarks, and I’d like to think we understand why mass includes binding energy), but even in these cases what we really know is that they follow from “sensible assumptions”, and one could just as easily ask “what if” about those assumptions instead. Overall, these “what if” questions make the book unique, and it would be a much weaker book without them.

“We Have No Idea” is strongest when the authors actually have some idea, i.e. when Whiteson is discussing experimental particle physics. It gets weaker on other topics, where the authors seem to rely more on others’ popular treatments (their discussion of “pixels of space-time” motivated me to write this post). Still, they at least seem to have asked the right people, and their accounts are on the more accurate end of typical pop science. (Closer to Quanta than IFLScience.)

The book’s humor really ties it together, often in surprisingly subtle ways. Each chapter has its own running joke, initially a throwaway line that grows into metaphors for everything the chapter discusses. It’s a great way to help the audience visualize without introducing too many new concepts at once. If there’s one thing cartoonists can teach science communicators, it’s the value of repetition.

I liked “We Have No Idea”. It could have been more daring, or more thorough, but it was still charming and honest and fun. If you’re looking for a Christmas present to explain physics to your relatives, you won’t go wrong with this book.

Pan Narrans Scientificus

As scientists, we want to describe the world as objectively as possible. We try to focus on what we can establish conclusively, to leave out excessive speculation and stick to cold, hard facts.

Then we have to write application letters.

Stick to the raw, un-embellished facts, and an application letter would just be a list: these papers in these journals, these talks and awards. Though we may sometimes wish applications worked that way, we don’t live in that kind of world. To apply for a job or a grant, we can’t just stick to the most easily measured facts. We have to tell a story.

The author Terry Pratchett called humans Pan Narrans, the Storytelling Ape. Stories aren’t just for fun, they’re how we see the world, how we organize our perceptions and actions. Without a story, the world doesn’t make sense. And that applies even to scientists.

Applications work best when they tell a story: how did you get here, and where are you going? Scientific papers, similarly, require some sort of narrative: what did you do, and why did you do it? When teaching or writing about science, we almost never just present the facts. We try to fit it into a story, one that presents the facts but also makes sense, in that deliciously human way. A story, more than mere facts, lets us project to the future, anticipating what you’ll do with that grant money or how others will take your research in new directions.

It’s important to remember, though, that stories aren’t actually facts. You can’t get too attached to one story, you have to be willing to shift as new facts come in. Those facts can be scientific measurements, but they can also be steps in your career. You aren’t going to tell the same story when applying to grad school as when you’re trying for tenure, and that’s not just because you’ll have more to tell. The facts of your life will be organized in new ways, rearranging in importance as the story shifts.

Keep your stories in mind as you write or do science. Think about your narrative, the story you’re using to understand the world. Think about what it predicts, how the next step in the story should go. And be ready to start a new story when you need to.

How to Get a “Minimum Scale” Without Pixels

Zoom in, and the world gets stranger. Down past atoms, past protons and neutrons, far past the smallest scales we can probe at the Large Hadron Collider, we get to the scale at which quantum gravity matters: the Planck scale.

Weird things happen at the Planck scale. Space and time stop making sense. Read certain pop science articles, and they’ll tell you the Planck scale is the smallest scale, the scale where space and time are quantized, the “pixels of the universe”.

That last sentence, by the way, is not actually how the Planck scale works. In fact, there’s pretty good evidence that the universe doesn’t have “pixels”, that space and time are not quantized in that way. Even very tiny pixels would change the speed of light, making it different for different colors. Tiny effects like that add up, and astronomers would almost certainly have noticed an effect from even Planck-scale pixels. Unless your idea of “pixels” is fairly unusual, it’s already been ruled out.

If the Planck scale isn’t the scale of the “pixels of the universe”, why do people keep saying it is?

Part of the problem is that the real story is vaguer. We don’t know what happens at the Planck scale. It’s not just that we don’t know which theory of quantum gravity is right: we don’t even know what different quantum gravity proposals predict. People are trying to figure it out, and there are some more or less viable ideas, but ultimately all we know is that at the Planck scale our description of space-time should break down.

“Our description breaks down” is unfortunately not very catchy. Certainly, it’s less catchy than “pixels of the universe”. Part of the problem is that most people don’t know what “our description breaks down” actually means.

So if that’s the part that’s puzzling you, maybe an example would help. This won’t be the full answer, though it could be part of the story. What it will be is an example of what “our description breaks down” can actually mean, how there can be a scale beyond which space-time stops making sense without there being “pixels”.

The example comes from string theory, from a concept called “T duality”. In string theory, “extra” dimensions beyond our usual three space and one time are curled up small, so that traveling along them just gets you back where you started. Instead of particles, there are strings, with length close to the Planck length.

Picture a loop of string in a small extra dimension. What can it do?

Image credit: someone who’s done a lot more work explaining string theory than I have

One thing it can do is move along the extra dimension. Since it has to end up back where it started, it can’t just move at any speed it wants. It turns out that the smaller the extra dimension, the more energy the string has when it spins around it.

The other thing it can do is wrap around the extra dimension. If it wraps around, the string has more energy if the dimension is larger, like a rubber band stretched around a pipe.

The string can do either or both of these multiple times. It can wrap many times around the extra dimension, or move in a quicker circle around it, or both at once. And if you calculate the energy of these combinations, you notice something: a string wound around a big circle has the same energy as a string moving around a small circle. In particular, you get the same energy on a circle of radius R, and a circle of radius l^2/R, where l is the length of the string.

It turns out it’s not just the energy that’s the same: for everything that happens on a circle of radius R, there’s a matching description with a circle of radius l^2/R, with wrapping and moving swapped. We say that the two descriptions are dual: two seemingly different pictures that turn out to be completely physically indistinguishable.

Since the two pictures are indistinguishable, it doesn’t actually make sense to talk about dimensions smaller than the length of the string. It’s not that they can’t exist, or that they’re smaller than the “pixels of the universe”: it’s just that any description you write down of such a small dimension could just as easily have been of a larger, dual dimension. It’s that your picture, of one obvious size of the curled up dimension, broke down and stopped making sense.

As I mentioned, this isn’t the whole picture of what happens at the Planck scale, even in string theory. It is an example of a broader idea that string theorists are investigating, that in order to understand space-time at the smallest scales you need to understand many different dual descriptions. And hopefully, it’s something you can hold in your mind, a specific example of what “our description breaks down” can actually mean in practice, without pixels.