Generalized Unitarity: The Frankenstein Method for Amplitudes

This is going to be a bit more technical than my usual, but you were warned.

There are a few things you’ll need to know to understand this post.

First, you should know that when we calculate probabilities of things happening in particle physics, we can do it by drawing Feynman diagrams, pictures of particles traveling and interacting. These diagrams can have loops, and the particle in the loop can have any momentum, from zero on up to infinity: you have to add up all the possibilities to get whatever you’re trying to calculate.

Second, you should understand that the “particles” in these loops aren’t really particles. They’re “virtual particles”, better understood as disturbances in quantum fields. Matt Strassler has a very nice article about this. In particular, these “particles” don’t have to obey E=mc^2 (or rather, if we include kinetic energy, E^2=p^2 c^2+m^2 c^4, where p is the momentum).

You can imagine a space that the momentum and energy “live in”. It’s got three dimensions for the three directions momentum can have, and one more dimension for the energy. Virtual particles can live anywhere in this four-dimensional space, but real particles have to live on a “shell” of points that obey E^2=p^2 c^2+m^2 c^4. If you’ve heard physicists say “on-shell” or “off-shell”, they’re referring to whether a particle is virtual, a quantum mechanical disturbance (and thus lives anywhere in the space) or a real classical particle (living on this “shell”).

Third, you should appreciate that in quantum physics, in Scott Aaronson’s words, we put complex numbers in our ontologies. Often, quantum weirdness shows itself when we look at our calculations as functions of complex numbers.

Let’s say I’m calculating an amplitude with one loop, and I draw a diagram like this:


Unitarity is how particle physicists say “all probabilities have to add up to one”. Since we have complex numbers in our ontologies, this statement is more complicated than it looks. One thing it ends up implying is that if I calculate an amplitude from the one-loop diagram above, its imaginary part will be given by multiplying together two simpler amplitudes:


Here you can imagine that I took a pair of scissors and “cut” the diagram in two along the dashed line. Now that the diagram has been “cut”, the particles I cut through are no longer part of a loop, so they’re no longer virtual: they’re real, on-shell particles.

If I wanted, I could keep “cutting” the diagram, generalizing this implication of unitarity. (For those who know some complex analysis, this involves taking residues.) I could cut all of the lines in the loop, like this:


Now something interesting happens. Here I’ve forced all four of the particles in the loop to be “on-shell”, to obey E^2=p^2 c^2+m^2 c^4. Previously, the momentum and energy in the loop was entirely free, living in its four-dimensional space. Now, though, it must obey four equations. And for those who’ve seen some algebra, four independent equations and four unknowns gives us one solution. By cutting all of these particles, we’ve killed all of the freedom that the loop momentum had. Instead of the living, quantum amplitude we had, we’ve cut it up into a bunch of dead, classical parts.

Why do this?

Well, suppose we have a guess for what the full amplitude should be. We’ve still got some uncertainty in our guess: it’s an ansatz.

If we wanted to check our guess, to fix the uncertainty in our ansatz, we could compare it to the full amplitude. But then we’d have to calculate the full quantum amplitude, and that’s hard.

It’s a lot easier, though, to calculate those “dead” classical amplitudes.

That’s the method we call “generalized unitarity”. We stitch together these easier-to-calculate, “dead” amplitudes. Enough different stitching patterns, and we can fix all the uncertainty in our ansatz, ending up with a unique correct answer without ever doing the full quantum calculation. Like Frankenstein, from dead parts we’ve assembled a living thing.


It’s off-shell!

How well does this work?

That depends on how good the ansatz is. The ansatze for one loop are very well understood, and for two loops the community is getting there. For higher loops, you have to be either smart or lucky. I happen to know some people who are both, I’ll be talking about them next week.

Poll Results, and What’s Next

I’ll leave last week’s poll up a while longer as more votes trickle in, but the overall pattern (beyond “Zipflike“) is pretty clear.

From pretty early on, most requests were for more explanations of QFT, gravity, and string theory concepts, with amplitudes content a clear second. This is something I can definitely do more of: I haven’t had much inspiration for interesting pieces of this sort recently, but it’s something I can ramp up in future.

I suspect that many of the people voting for more QFT and more amplitudes content were also interested in something else, though: more physics news. Xezlec mentioned that with Résonaances and Of Particular Significance quiet, there’s an open niche for vaguely reasonable people blogging about physics.

The truth is, I didn’t think of adding a “more physics news” option to the poll. I’m not a great source of news: not being a phenomenologist, I don’t keep up with the latest experimental results, and since my sub-field is small and insular I’m not always aware of the latest thing Witten or Maldacena is working on.

For an example of the former: recently, various LHC teams presented results at the Moriond and Aspen conferences, with no new evidence of supersymmetry in the data they’ve gathered thus far. This triggered concessions on several bets about SUSY (including an amusingly awkward conversation about how to pay one of them).

And I only know about that because other bloggers talked about it.

So I’m not going to be a reliable source of physics news.

With that said, knowing there’s a sizable number of people interested in this kind of thing is helpful. I’ve definitely had times when I saw something I found interesting, but wasn’t sure if my audience would care. (For example, recently there’s been some substantial progress on the problem that gave this blog its name.) Now that I know some of you are interested, I’ll err on the side of posting about these kinds of things.

“What’s it like to be a physicist” and science popularization were both consistently third and fourth in the poll, switching back and forth as more votes came in. This tells me that while many of you want more technical content, there are still people interested in pieces aimed to a broader audience, so I won’t abandon those.

The other topics were fairly close together, with the more “news-y” ones (astrophysics/cosmology and criticism of bad science coverage) beating the less “news-y” ones. This also supports my guess that people were looking for a “more physics news” option. A few people even voted for “more arguments”, which was really more of a joke topic: getting into arguments with other bloggers tends to bring in readers, but it’s not something I ever plan to do intentionally.

So, what’s next? I’ll explain more quantum field theory, talk more about interesting progress in amplitudes, and mention news when I come across it, trusting you guys to find it interesting. I’ll keep up with the low-level stuff, and with trying to humanize physics, to get the public to understand what being a physicist is all about. And I’ll think about some of the specific suggestions you gave: I’m always looking for good post ideas.

New Poll: What Would You Like to See More Of?

It’s been a while since I last polled you guys. Back then, I was curious what sorts of backgrounds my readers had. In the end, roughly half of you had some serious background in high-energy physics, while the other half had seen some physics, but not a lot.

This time, I’d like to know what sort of content you want to see. WordPress tells me how well an individual post does, but there isn’t much of a pattern to my best-performing posts beyond the vagaries of whose attention they grab. That’s why I’m asking you what you want to see more of. I’ve split things into vague categories. Feel free to vote for as many as you like, and let me know in the comments if there’s something I missed.

The Way to a Mathematician’s Heart Is through a Pi

Want to win over a mathematician? Bake them a pi.

Of course, presentation counts. You can’t just pour a spew of digits.


If you have to, at least season it with 9’s

Ideally, you’ve baked your pi at home, in a comfortable physical theory. You lay out a graph to give it structure, then wrap it in algebraic curves before baking under an integration.

(Sometimes you can skip this part. My mathematician will happily eat graphs and ignore the pi.)

At this point, if your motives are pure (or at least mixed Tate), you have your pi. To make it more interesting, be sure to pair with a well-aged Riemann zeta value. With the right preparation, you can achieve a truly cosmic pi.


Fine, that last joke was a bit of a stretch. Hope you had a fun pi day!

Simple Rules Don’t Mean a Simple Universe

It’s always fun when nature surprises you.

This week, the Perimeter Colloquium was given by Laura Nuttall, a member of the LIGO collaboration.

In a physics department, the colloquium is a regularly scheduled talk that’s supposed to be of interest to the entire department. Some are better at this than others, but this one was pretty fun. The talk explored the sorts of questions gravitational wave telescopes like LIGO can answer about the world.

At one point during the talk, Nuttall showed a plot of what happens when a star collapses into a supernova. For a range of masses, the supernova leaves behind a neutron star (shown on the plot in purple). For heavier stars, it instead results in a black hole, a big black region of the plot.

What surprised me was that inside the black region, there was an unexpected blob: a band of white in the middle of the black holes. Heavier than that band, the star forms a black hole. Lighter, it also forms a black hole. But inside?

Nothing. The star leaves nothing behind. It just explodes.

The physical laws that govern collapsing stars might not be simple, but at least they sound straightforward. Stars are constantly collapsing under their own weight, held up only by the raging heat of nuclear fire. If that heat isn’t strong enough, the star collapses, and other forces take over, so the star becomes a white dwarf, or a neutron star. And if none of those forces is strong enough, the star collapses completely, forming a black hole.

Too small, neutron star. Big enough, black hole. It seems obvious. But reality makes things more complicated.

It turns out, if a star is both massive and has comparatively little metal in it, the core of the star can get very very hot. That heat powers an explosion more powerful than a typical star, one that tears the star apart completely, leaving nothing behind that could form a black hole. Lighter stars don’t get as hot, so they can still form black holes, and heavier stars are so heavy they form black holes anyway. But for those specific stars, in the middle, nothing gets left behind.

This isn’t due to mysterious unknown physics. It’s actually been understood for quite some time. It’s a consequence of those seemingly straightforward laws, one that isn’t at all obvious until you do the work and run the simulations and observe the universe and figure it out.

Just because our world is governed by simple laws, doesn’t mean the universe itself is simple. Give it a little room (and several stars’ worth of hydrogen) and it can still surprise you.

What Space Can Tell Us about Fundamental Physics

Back when LIGO announced its detection of gravitational waves, there was one question people kept asking me: “what does this say about quantum gravity?”

The answer, each time, was “nothing”. LIGO’s success told us nothing about quantum gravity, and very likely LIGO will never tell us anything about quantum gravity.

The sheer volume of questions made me think, though. Astronomy, astrophysics, and cosmology fascinate people. They capture the public’s imagination in a way that makes them expect breakthroughs about fundamental questions. Especially now, with the LHC so far seeing nothing new since the Higgs, people are turning to space for answers.

Is that a fair expectation? Well, yes and no.

Most astrophysicists aren’t concerned with finding new fundamental laws of nature. They’re interested in big systems like stars and galaxies, where we know most of the basic rules but can’t possibly calculate all their consequences. Like most physicists, they’re doing the vital work of “physics of decimals”.

At the same time, there’s a decent chunk of astrophysics and cosmology that does matter for fundamental physics. Just not all of it. Here are some of the key areas where space has something important to say about the fundamental rules that govern our world:


1. Dark Matter:

Galaxies rotate at different speeds than their stars would alone. Clusters of galaxies bend light that passes by, and do so more than their visible mass would suggest. And when scientists try to model the evolution of the universe, from early images to its current form, the models require an additional piece: extra matter that cannot interact with light. All of this suggests that there is some extra “dark” matter in the universe, not described by our standard model of particle physics.

If we want to understand this dark matter, we need to know more about its properties, and much of that can be learned from astronomy. If it turns out dark matter isn’t really matter after all, if it can be explained by a modification of gravity or better calculations of gravity’s effects, then it still will have important implications for fundamental physics, and astronomical evidence will still be key to finding those implications.

2. Dark Energy (/Cosmological Constant/Inflation/…):

The universe is expanding, and its expansion appears to be accelerating. It also seems more smooth and uniform than expected, suggesting that it had a period of much greater acceleration early on. Both of these suggest some extra quantity: a changing acceleration, a “dark energy”, the sort of thing that can often be explained by a new scalar field like the Higgs.

Again, the specifics: how (and perhaps if) the universe is expanding now, what kinds of early expansion (if any) the shape of the universe suggests, these will almost certainly have implications for fundamental physics.

3. Limits on stable stuff:

Let’s say you have a new proposal for particle physics. You’ve predicted a new particle, but it can’t interact with anything else, or interacts so weakly we’d never detect it. If your new particle is stable, then you can still say something about it, because its mass would have an effect on the early universe. Too many such particles and they would throw off cosmologists’ models, ruling them out.

Alternatively, you might predict something that could be detected, but hasn’t, like a magnetic monopole. Then cosmologists can tell you how many such particles would have been produced in the early universe, and thus how likely we would be to detect them today. If you predict too many particles and we don’t see them, then that becomes evidence against your proposal.

4. “Cosmological Collider Physics”:

A few years back, Nima Arkani-Hamed and Juan Maldacena suggested that the early universe could be viewed as an extremely high energy particle collider. While this collider performed only one experiment, the results from that experiment are spread across the sky, and observed patterns in the early universe should tell us something about the particles produced by the cosmic collider.

People are still teasing out the implications of this idea, but it looks promising, and could mean we have a lot more to learn from examining the structure of the universe.

5. Big Weird Space Stuff:

If you suspect we live in a multiverse, you might want to look for signs of other universes brushing up against our own. If your model of the early universe predicts vast cosmic strings, maybe a gravitational wave detector like LIGO will be able to see them.

6. Unexpected weirdness:

In all likelihood, nothing visibly “quantum” happens at the event horizons of astrophysical black holes. If you think there’s something to see though, the Event Horizon Telescope might be able to see it. There’s a grab bag of other predictions like this: situations where we probably won’t see anything, but where at least one person thinks there’s a question worth asking.


I’ve probably left something out here, but this should give you a general idea. There is a lot that fundamental physics can learn from astronomy, from the overall structure and origins of the universe to unexplained phenomena like dark matter. But not everything in astronomy has these sorts of implications: for the most part, astronomy is interesting not because it tells us something about the fundamental laws of nature, but because it tells us how the vast space above us actually happens to work.

Visiting LBNL

I’ve been traveling this week, giving a talk at Lawrence Berkeley National Laboratory, so this will be a short post.

In my experience, most non-scientists don’t know about the national labs. In the US, the majority of scientists work for universities, but a substantial number work at one of the seventeen national labs overseen by the Department of Energy. It’s a good gig, if you can get it: no teaching duties, and a fair amount of freedom in what you research.

Each lab has its own focus, and its own culture. In the past I’ve spent a lot of time at SLAC, which runs a particle accelerator near Stanford (among other things). Visiting LBNL, I was amused by some of the differences. At SLAC, the guest rooms have ads for Stanford-branded bed covers. LBNL, meanwhile, brags about its beeswax-based toiletries in recyclable cardboard bottles. SLAC is flat, spread out, and fairly easy to navigate. LBNL is a maze of buildings arranged in tight terraces on a steep hill.


I forgot to take a picture, but someone appears to have drawn one.

While the differences were amusing, physicists are physicists everywhere. It was nice to share my work with people who mostly hadn’t heard about it before, and to get an impression of what they were working on.