Category Archives: Life as a Physicist

The Quantum Kids

I gave a pair of public talks at the Niels Bohr International Academy this week on “The Quest for Quantum Gravity” as part of their “News from the NBIA” lecture series. The content should be familiar to long-time readers of this blog: I talked about renormalization, and gravitons, and the whole story leading up to them.

(I wanted to title the talk “How I Learned to Stop Worrying and Love Quantum Gravity”, like my blog post, but was told Danes might not get the Doctor Strangelove reference.)

I also managed to work in some history, which made its way into the talk after Poul Damgaard, the director of the NBIA, told me I should ask the Niels Bohr Archive about Gamow’s Thought Experiment Device.

“What’s a Thought Experiment Device?”

einsteinbox

This, apparently

If you’ve heard of George Gamow, you’ve probably heard of the Alpher-Bethe-Gamow paper, his work with grad student Ralph Alpher on the origin of atomic elements in the Big Bang, where he added Hans Bethe to the paper purely for an alpha-beta-gamma pun.

As I would learn, Gamow’s sense of humor was prominent quite early on. As a research fellow at the Niels Bohr Institute (essentially a postdoc) he played with Bohr’s kids, drew physics cartoons…and made Thought Experiment Devices. These devices were essentially toy experiments, apparatuses that couldn’t actually work but that symbolized some physical argument. The one I used in my talk, pictured above, commemorated Bohr’s triumph over one of Einstein’s objections to quantum theory.

Learning more about the history of the institute, I kept noticing the young researchers, the postdocs and grad students.

h155

Lev Landau, George Gamow, Edward Teller. The kids are Aage and Ernest Bohr. Picture from the Niels Bohr Archive.

We don’t usually think about historical physicists as grad students. The only exception I can think of is Feynman, with his stories about picking locks at the Manhattan project. But in some sense, Feynman was always a grad student.

This was different. This was Lev Landau, patriarch of Russian physics, crowning name in a dozen fields and author of a series of textbooks of legendary rigor…goofing off with Gamow. This was Edward Teller, father of the Hydrogen Bomb, skiing on the institute lawn.

These were the children of the quantum era. They came of age when the laws of physics were being rewritten, when everything was new. Starting there, they could do anything, from Gamow’s cosmology to Landau’s superconductivity, spinning off whole fields in the new reality.

On one level, I envy them. It’s possible they were the last generation to be on the ground floor of a change quite that vast, a shift that touched all of physics, the opportunity to each become gods of their own academic realms.

I’m glad to know about them too, though, to see them as rambunctious grad students. It’s all too easy to feel like there’s an unbridgeable gap between postdocs and professors, to worry that the only people who make it through seem to have always been professors at heart. Seeing Gamow and Landau and Teller as “quantum kids” dispels that: these are all-too-familiar grad students and postdocs, joking around in all-too-familiar ways, who somehow matured into some of the greatest physicists of their era.

Advertisements

Our Bargain

Sabine Hossenfelder has a blog post this week chastising particle physicists and cosmologists for following “upside-down Popper”, or assuming a theory is worth working on merely because it’s falsifiable. She describes her colleagues churning out one hypothesis after another, each tweaking an old idea just enough to make it falsifiable in the next experiment, without caring whether the hypothesis is actually likely to be true.

Sabine is much more of an expert in this area of physics (phenomenology) than I am, and I don’t presume to tell her she’s wrong about that community. But the problem she’s describing is part of something bigger, something that affects my part of physics as well.

There’s a core question we’d all like to answer: what should physicists work on? What criteria should guide us?

Falsifiability isn’t the whole story. The next obvious criterion is a sense of simplicity, of Occam’s Razor or mathematical elegance. Sabine has argued against the latter, which prompted a friend of mine to comment that between rejecting falsifiability and elegance, Sabine must want us to stop doing high-energy physics at all!

That’s more than a little unfair, though. I think Sabine has a reasonably clear criterion in mind. It’s the same criterion that most critics of the physics mainstream care about. It’s even the same criterion being used by the “other side”, the sort of people who criticize anything that’s not string/SUSY/inflation.

The criterion is quite a simple one: physics research should be productive. Anything we publish, anything we work on, should bring us closer to understanding the real world.

And before you object that this criterion is obvious, that it’s subjective, that it ignores the very real disagreements between the Sabines and the Luboses of the world…before any of that, please let me finish.

We can’t achieve this criterion. And we shouldn’t.

We can’t demand that all physics be productive without breaking a fundamental bargain, one we made when we accepted that science could be a career.

1200px-13_portrait_of_robert_hooke

The Hunchback of Notre Science

It wasn’t always this way. Up until the nineteenth century, “scientist” was a hobby, not a job.

After Newton published his theory of gravity, he was famously accused by Robert Hooke of stealing the idea. There’s some controversy about this, but historians agree on a few points: that Hooke did write a letter to Newton suggesting a 1/r^2 force law, and that Hooke, unlike Newton, never really worked out the law’s full consequences.

Why not? In part, because Hooke, unlike Newton, had a job.

Hooke was arguably the first person for whom science was a full-time source of income. As curator of experiments for the Royal Society, it was his responsibility to set up demonstrations for each Royal Society meeting. Later, he also handled correspondence for the Royal Society Journal. These responsibilities took up much of his time, and as a result, even if he was capable of following up on the consequences of 1/r^2 he wouldn’t have had time to focus on it. That kind of calculation wasn’t what he was being paid for.

We’re better off than Hooke today. We still have our responsibilities, to journals and teaching and the like, at various stages of our careers. But in the centuries since Hooke expectations have changed, and real original research is no longer something we have to fit in our spare time. It’s now a central expectation of the job.

When scientific research became a career, we accepted a kind of bargain. On the positive side, you no longer have to be independently wealthy to contribute to science. More than that, the existence of professional scientists is the bedrock of technological civilization. With enough scientists around, we get modern medicine and the internet and space programs and the LHC, things that wouldn’t be possible in a world of rare wealthy geniuses.

We pay a price for that bargain, though. If science is a steady job, then it has to provide steady work. A scientist has to be able to go in, every day, and do science.

And the problem is, science doesn’t always work like that. There isn’t always something productive to work on. Even when there is, there isn’t always something productive for you to work on.

Sabine blames “upside-down Popper” on the current publish-or-perish environment in physics. If physics careers weren’t so cut-throat and the metrics they are judged by weren’t so flawed, then maybe people would have time to do slow, careful work on deeper topics rather than pumping out minimally falsifiable papers as fast as possible.

There’s a lot of truth to this, but I think at its core it’s a bit too optimistic. Each of us only has a certain amount of expertise, and sometimes that expertise just isn’t likely to be productive at the moment. Because science is a job, a person in that position can’t just go work at the Royal Mint like Newton did. (The modern-day equivalent would be working for Wall Street, but physicists rarely come back from that.) Instead, they keep doing what they know how to do, slowly branching out, until they’ve either learned something productive or their old topic becomes useful once more. You can think of it as a form of practice, where scientists keep their skills honed until they’re needed.

So if we slow down the rate of publication, if we create metrics for universities that let them hire based on the depth and importance of work and not just number of papers and citations, if we manage all of that then yes we will improve science a great deal. But Lisa Randall still won’t work on Haag’s theorem.

In the end, we’ll still have physicists working on topics that aren’t actually productive.

img_0622

A physicist lazing about unproductively under an apple tree

So do we have to pay physicists to work on whatever they want, no matter how ridiculous?

No, I’m not saying that. We can’t expect everyone to do productive work all the time, but we can absolutely establish standards to make the work more likely to be productive.

Strange as it may sound, I think our standards for this are already quite good, or at least better than many other fields.

First, there’s falsifiability itself, or specifically our attitude towards it.

Physics’s obsession with falsifiability has one important benefit: it means that when someone proposes a new model of dark matter or inflation that they tweaked to be just beyond the current experiments, they don’t claim to know it’s true. They just claim it hasn’t been falsified yet.

This is quite different from what happens in biology and the social sciences. There, if someone tweaks their study to be just within statistical significance, people typically assume the study demonstrated something real. Doctors base treatments on it, and politicians base policy on it. Upside-down Popper has its flaws, but at least it’s never going to kill anybody, or put anyone in prison.

Admittedly, that’s a pretty low bar. Let’s try to set a higher one.

Moving past falsifiability, what about originality? We have very strong norms against publishing work that someone else has already done.

Ok, you (and probably Sabine) would object, isn’t that easy to get around? Aren’t all these Popper-flippers pretending to be original but really just following the same recipe each time, modifying their theory just enough to stay falsifiable?

To some extent. But if they were really following a recipe, you could beat them easily: just write the recipe down.

Physics progresses best when we can generalize, when we skip from case-by-case to understanding whole swaths of cases at once. Over time, there have been plenty of cases in which people have done that, where a number of fiddly hand-made models have been summarized in one parameter space. Once that happens, the rule of originality kicks in: now, no-one can propose another fiddly model like that again. It’s already covered.

As long as the recipe really is just a recipe, you can do this. You can write up what these people are doing in computer code, release the code, and then that’s that, they have to do something else. The problem is, most of the time it’s not really a recipe. It’s close enough to one that they can rely on it, close enough to one that they can get paper after paper when they need to…but it still requires just enough human involvement, just enough genuine originality, to be worth a paper.

The good news is that the range of “recipes” we can code up increases with time. Some spaces of theories we might never be able to describe in full generality (I’m glad there are people trying to do statistics on the string landscape, but good grief it looks quixotic). Some of the time though, we have a real chance of putting a neat little bow on a subject, labeled “no need to talk about this again”.

This emphasis on originality keeps the field moving. It means that despite our bargain, despite having to tolerate “practice” work as part of full-time physics jobs, we can still nudge people back towards productivity.

 

One final point: it’s possible you’re completely ok with the idea of physicists spending most of their time “practicing”, but just wish they wouldn’t make such a big deal about it. Maybe you can appreciate that “can I cook up a model where dark matter kills the dinosaurs” is an interesting intellectual exercise, but you don’t think it should be paraded in front of journalists as if it were actually solving a real problem.

In that case, I agree with you, at least up to a point. It is absolutely true that physics has a dysfunctional relationship with the media. We’re too used to describing whatever we’re working on as the most important thing in the universe, and journalists are convinced that’s the only way to get the public to pay attention. This is something we can and should make progress on. An increasing number of journalists are breaking from the trend and focusing not on covering the “next big thing”, but in telling stories about people. We should do all we can to promote those journalists, to spread their work over the hype, to encourage the kind of stories that treat “practice” as interesting puzzles pursued by interesting people, not the solution to the great mysteries of physics. I know that if I ever do anything newsworthy, there are some journalists I’d give the story to before any others.

At the same time, it’s important to understand that some of the dysfunction here isn’t unique to physics, or even to science. Deep down the reason nobody can admit that their physics is “practice” work is the same reason people at job interviews claim to love the company, the same reason college applicants have to tell stirring stories of hardship and couples spend tens of thousands on weddings. We live in a culture in which nothing can ever just be “ok”, in which admitting things are anything other than exceptional is akin to calling them worthless. It’s an arms-race of exaggeration, and it goes far beyond physics.

(I should note that this “culture” may not be as universal as I think it is. If so, it’s possible its presence in physics is due to you guys letting too many of us Americans into the field.)

 

We made a bargain when we turned science into a career. We bought modernity, but the price we pay is subsidizing some amount of unproductive “practice” work. We can negotiate the terms of our bargain, and we should, tilting the field with incentives to get it closer to the truth. But we’ll never get rid of it entirely, because science is still done by people. And sometimes, despite what we’re willing to admit, people are just “ok”.

Visiting Uppsala

I’ve been in Uppsala this week, visiting Henrik Johansson‘s group.

IMG_20170927_095605609

The Ångström Laboratory here is substantially larger than an ångström, a clear example of false advertising.

As such, I haven’t had time to write a long post about the recent announcement by the LIGO and VIRGO collaborations. Luckily, Matt Strassler has written one of his currently all-too-rare posts on the subject, so if you’re curious you should check out what he has to say.

Looking at the map of black hole collisions in that post, I’m struck by how quickly things have improved. The four old detections are broad slashes across the sky, the newest is a small patch. Now that there are enough detectors to triangulate, all detections will be located that precisely, or better. A future map might be dotted with precise locations of black hole collisions, but it would still be marred by those four slashes: relics of the brief time when only two machines in the world could detect gravitational waves.

Thoughts on Polchinski’s Memoir

I didn’t get a chance to meet Joseph Polchinski when I was visiting Santa Barbara last spring. At the time, I heard his health was a bit better, but he still wasn’t feeling well enough to come in to campus. Now that I’ve read his memoir, I almost feel like I have met him. There’s a sense of humor, a diffidence, and a passion for physics that shines through the pages.

The following are some scattered thoughts inspired by the memoir:

 

A friend of mine once complained to me that in her field grad students all brag about the colleges they went to. I mentioned that in my field your undergrad never comes up…unless it was Caltech. For some reason, everyone I’ve met who went to Caltech is full of stories about the place, and Polchinski is no exception. Speaking as someone who didn’t go there, it seems like Caltech has a profound effect on its students that other places don’t.

 

Polchinski mentions hearing stories about geniuses of the past, and how those stories helped temper some of his youthful arrogance. There’s an opposite effect that’s also valuable: hearing stories like Polchinski’s, his descriptions of struggling with anxiety and barely publishing and “not really accomplishing anything” till age 40, can be a major comfort to those of us who worry we’ve fallen behind in the academic race. That said, it’s important not to take these things too far: times have changed, you’re not Polchinski, and much like his door-stealing trick at Caltech getting a postdoc without any publications is something you shouldn’t try at home. Even Witten’s students need at least one.

 

Last week I was a bit puzzled by nueww’s comment, a quote from Polchinski’s memoir which distinguishes “math of the equations” from “math of the solutions”, attributing the former to physicists and the latter to mathematicians. Reading the context in the memoir and the phrase’s origin in a remark by Susskind cleared up a bit, but still left me uneasy. I only figured out why after Lubos Motl posted about it: it doesn’t match my experience of mathematicians at all!

If anything, I think physicists usually care more about the “solutions” than mathematicians do. In my field, often a mathematician will construct some handy basis of functions and then frustrate everyone by providing no examples of how to use them. In the wider math community I’ve met graph theorists who are happy to prove something is true for all graphs of size 10^{10^10} and larger, not worrying about the vast number of graphs where it fails because it’s just a finite number of special cases. And I don’t think this is just my experience: a common genre of jokes revolve around mathematicians proving a solution exists and then not bothering to do anything with it (for example, see the joke with the hotel fire here).

I do think there’s a meaningful sense in which mathematicians care about details that we’re happy to ignore, but “solutions” versus “equations” isn’t really the right axis. It’s something more like “rigor” versus “principles”. Mathematicians will often begin a talk by defining a series of maps between different spaces, carefully describing where they are and aren’t valid. A physicist might just write down a function. That sort of thing is dangerous in mathematics: there are always special, pathological cases that make careful definitions necessary. In physics, those cases rarely come up, and when they do there’s often a clear physical problem that brings them to the forefront. We have a pretty good sense of when we need rigor, and when we don’t we’re happy to lay things out without filling in the details, putting a higher priority on moving forward and figuring out the basic principles underlying reality.

 

Polchinski talks a fair bit about his role in the idea of the multiverse, from hearing about Weinberg’s anthropic argument to coming to terms with the string landscape. One thing his account makes clear is how horrifying the concept seemed at first: how the idea that the parameters of our universe might just be random could kill science and discourage experimentalists. This touches on something that I think gets lost in arguments about the multiverse: even the people most involved in promoting the multiverse in public aren’t happy about it.

It also sharpened my thinking about the multiverse a bit. I’ve talked before about how I don’t think the popularity of the multiverse is actually going to hurt theoretical physics as a field. Polchinski’s worries made me think about the experimental side of the equation: why do experiments if the world might just be random? I think I have a clearer answer to this now, but it’s a bit long, so I’ll save it for a future post.

 

One nice thing about these long-term accounts is you get to see how much people shift between fields over time. Polchinski didn’t start out working in string theory, and most of the big names in my field, like Lance Dixon and David Kosower, didn’t start out in scattering amplitudes. Academic careers are long, and however specialized we feel at any one time we can still get swept off in a new direction.

 

I’m grateful for this opportunity to “meet” Polchinski, if only through his writing. His is a window on the world of theoretical physics that is all too rare, and valuable as a result.

On the Care and Feeding of Ideas

I read Zen and the Art of Motorcycle Maintenance in high school. It’s got a reputation for being obnoxiously mystical, but one of its points seemed pretty reasonable: the claim that the hard part of science, and the part we understand the least, is coming up with hypotheses.

In some sense, theoretical physics is all about hypotheses. By this I don’t mean that we just say “what if?” all the time. I mean that in theoretical physics most of the work is figuring out the right way to ask a question. Phrase your question in the right way and the answer becomes obvious (or at least, obvious after a straightforward calculation). Because our questions are mathematical, the right question can logically imply its own solution.

From the point of view of “Zen and the Art”, as well as most non-scientists I’ve met, this part is utterly mysterious. The ideas you need here seem like they can’t come from hard work or careful observation. In order to ask the right questions, you just need to be “smart”.

In practice, I’ve noticed there’s more to it than that. We can’t just sit around and wait for an idea to show up. Instead, as physicists we develop a library of tricks, often unstated, that let us work towards the ideas we need.

Sometimes, this involves finding simpler cases, working with them until we understand the right questions to ask. Sometimes it involves doing numerics, or using crude guesses, not because either method will give the final answer but because it will show what the answer should look like. Sometimes we need to rephrase the problem many times, in many different contexts, before we happen on one that works. Most of this doesn’t end up in published papers, so in the end we usually have to pick it up from experience.

Along the way, we often find tricks to help us think better. Mostly this is straightforward stuff: reminders to keep us on-task, keeping our notes organized and our code commented so we have a good idea of what we were doing when we need to go back to it. Everyone has their own personal combination of these things in the background, and they’re rarely discussed.

The upshot is that coming up with ideas is hard work. We need to be smart, sure, but that’s not enough by itself: there are a lot of smart people who aren’t physicists after all.

With all that said, some geniuses really do seem to come up with ideas out of thin air. It’s not the majority of the field: we’re not the idiosyncratic Sheldon Coopers everyone seems to imagine. But for a few people, it really does feel like there’s something magical about where they get their ideas. I’ve had the privilege of working with a couple people like this, and the way they think sometimes seems qualitatively different from our usual way of building ideas. I can’t see any of the standard trappings, the legacy of partial results and tricks of thought, that would lead to where they end up. That doesn’t mean they don’t use tricks just like the rest of us, in the end. But I think genius, if it means anything at all, is thinking in a novel enough way that from the outside it looks like magic.

Most of the time, though, we just need to hone our craft. We build our methods and shape our minds as best we can, and we get better and better at the central mystery of science: asking the right questions.

Topic Conferences, Place Conferences

I spent this week at Current Themes in High Energy Physics and Cosmology, a conference at the Niels Bohr Institute.

Most conferences focus on a particular topic. Usually the broader the topic, the bigger the conference. A workshop on flux tubes is smaller than Amplitudes, which is smaller than Strings, which is smaller than the March Meeting of the American Physical Society.

“Current Themes in High Energy Physics and Cosmology” sounds like a very broad topic, but it was a small conference. The reason why is that it wasn’t a “topic conference”, it was a “place conference”.

Most conferences focus on a topic, but some are built around a place. These conferences are hosted by a particular institute year after year. Sometimes each year has a loose theme (for example, the Simons Summer Workshop this year focused on theories without supersymmetry) but sometimes no attempt is made to tie the talks together (“current themes”).

Instead of a theme, the people who go to these conferences are united by their connections to the institute. Some of them have collaborators there, or worked there in the past. Others have been coming for many years. Some just happened to be in the area.

While they may seem eclectic, “place” conferences have a valuable role: they help to keep our interests broad. In physics, there’s a natural tendency to specialize. Left alone, we end up reading papers and going to talks only when they’re directly relevant for what we’re working on. By doing this we lose track of the wider field, losing access to the insights that come from different perspectives and methods.

“Place” conferences, like seminars, help pull things in the other direction. When you’re hearing talks from “everyone connected to the Simons Center” or “everyone connected to the Niels Bohr Institute”, you’re exposed to a much broader range of topics than a conference for just your sub-field. You get a broad overview of what’s going on in the field, but unlike a big conference like Strings there are few enough people that you can actually talk to everyone.

Physicists’ attachment to places is counter-intuitive. We’re studying mathematical truths and laws of nature, surely it shouldn’t matter where we work. In practice, though, we’re still human. Out of the vast span of physics we still pick our interests based on the people around us. That’s why places, why institutes with a wide range of excellent people, are so important: they put our social instincts to work studying the universe.