The Physics Isn’t New, We Are

Last week, I mentioned the announcement from the IceCube, Fermi-LAT, and MAGIC collaborations of high-energy neutrinos and gamma rays detected from the same source, the blazar TXS 0506+056. Blazars are sources of gamma rays, thought to be enormous spinning black holes that act like particle colliders vastly more powerful than the LHC. This one, near Orion’s elbow, is “aimed” roughly at Earth, allowing us to detect the light and particles it emits. On September 22, a neutrino with energy around 300 TeV was detected by IceCube (a kilometer-wide block of Antarctic ice stuffed with detectors), coming from the direction of TXS 0506+056. Soon after, the satellite Fermi-LAT and ground-based telescope MAGIC were able to confirm that the blazar TXS 0506+056 was flaring at the time. The IceCube team then looked back, and found more neutrinos coming from the same source in earlier years. There are still lingering questions (Why didn’t they see this kind of behavior from other, closer blazars?) but it’s still a nice development in the emerging field of “multi-messenger” astronomy.

It also got me thinking about a conversation I had a while back, before one of Perimeter’s Public Lectures. An elderly fellow was worried about the LHC. He wondered if putting all of that energy in the same place, again and again, might do something unprecedented: weaken the fabric of space and time, perhaps, until it breaks? He acknowledged this didn’t make physical sense, but what if we’re wrong about the physics? Do we really want to take that risk?

At the time, I made the same point that gets made to counter fears of the LHC creating a black hole: that the energy of the LHC is less than the energy of cosmic rays, particles from space that collide with our atmosphere on a regular basis. If there was any danger, it would have already happened. Now, knowing about blazars, I can make a similar point: there are “galactic colliders” with energies so much higher than any machine we can build that there’s no chance we could screw things up on that kind of scale: if we could, they already would have.

This connects to a broader point, about how to frame particle physics. Each time we build an experiment, we’re replicating something that’s happened before. Our technology simply isn’t powerful enough to do something truly unprecedented in the universe: we’re not even close! Instead, the point of an experiment is to reproduce something where we can see it. It’s not the physics itself, but our involvement in it, our understanding of it, that’s genuinely new.

The IceCube experiment itself is a great example of this: throughout Antarctica, neutrinos collide with ice. The only difference is that in IceCube’s ice, we can see them do it. More broadly, I have to wonder how much this is behind the “unreasonable effectiveness of mathematics”: if mathematics is just the most precise way humans have to communicate with each other, then of course it will be effective in physics, since the goal of physics is to communicate the nature of the world to humans!

There may well come a day when we’re really able to do something truly unprecedented, that has never been done before in the history of the universe. Until then, we’re playing catch-up, taking laws the universe has tested extensively and making them legible, getting humanity that much closer to understanding physics that, somewhere out there, already exists.

Advertisements

One thought on “The Physics Isn’t New, We Are

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s