When It Rains It Amplitudes

The last few weeks have seen a rain of amplitudes papers on arXiv, including quite a few interesting ones.


As well as a fair amount of actual rain in Copenhagen

Over the last year Nima Arkani-Hamed has been talking up four or five really interesting results, and not actually publishing any of them. This has understandably frustrated pretty much everybody. In the last week he published two of them, Cosmological Polytopes and the Wavefunction of the Universe with Paolo Benincasa and Alexander Postnikov and Scattering Amplitudes For All Masses and Spins with Tzu-Chen Huang and Yu-tin Huang. So while I’ll have to wait on the others (I’m particularly looking forward to seeing what he’s been working on with Ellis Yuan) this can at least tide me over.

Cosmological Polytopes and the Wavefunction of the Universe is Nima & co.’s attempt to get a geometrical picture for cosmological correlators, analogous to the Ampituhedron. Cosmological correlators ask questions about the overall behavior of the visible universe: how likely is one clump of matter to be some distance from another? What sorts of patterns might we see in the Cosmic Microwave Background? This is the sort of thing that can be used for “cosmological collider physics”, an idea I mention briefly here.

Paolo Benincasa was visiting Perimeter near the end of my time there, so I got a few chances to chat with him about this. One thing he mentioned, but that didn’t register fully at the time, was Postnikov’s involvement. I had expected that even if Nima and Paolo found something interesting that it wouldn’t lead to particularly deep mathematics. Unlike the N=4 super Yang-Mills theory that generates the Amplituhedron, the theories involved in these cosmological correlators aren’t particularly unique, they’re just a particular class of models cosmologists use that happen to work well with Nima’s methods. Given that, it’s really surprising that they found something mathematically interesting enough to interest Postnikov, a mathematician who was involved in the early days of the Amplituhedron’s predecessor, the Positive Grassmannian. If there’s something that mathematically worthwhile in such a seemingly arbitrary theory then perhaps some of the beauty of the Amplithedron are much more general than I had thought.

Scattering Amplitudes For All Masses and Spins is on some level a byproduct of Nima and Yu-tin’s investigations of whether string theory is unique. Still, it’s a useful byproduct. Many of the tricks we use in scattering amplitudes are at their best for theories with massless particles. Once the particles have masses our notation gets a lot messier, and we often have to rely on older methods. What Nima, Yu-tin, and Tzu-Chen have done here is to build a notation similar to what we use for massless particle, but for massive ones.

The advantage of doing this isn’t just clean-looking papers: using this notation makes it a lot easier to see what kinds of theories make sense. There are a variety of old theorems that restrict what sorts of theories you can write down: photons can’t interact directly with each other, there can only be one “gravitational force”, particles with spins greater than two shouldn’t be massless, etc. The original theorems were often fairly involved, but for massless particles there were usually nice ways to prove them in modern amplitudes notation. Yu-tin in particular has a lot of experience finding these kinds of proofs. What the new notation does is make these nice simple proofs possible for massive particles as well. For example, you can try to use the new notation to write down an interaction between a massive particle with spin greater than two and gravity, and what you find is that any expression you write breaks down: it works fine at low energies, but once you’re looking at particles with energies much higher than their mass you start predicting probabilities greater than one. This suggests that particles with higher spins shouldn’t be “fundamental”, they should be explained in terms of other particles at higher energies. The only way around this turns out to be an infinite series of particles to cancel problems from the previous ones, the sort of structure that higher vibrations have in string theory. I often don’t appreciate papers that others claim are a pleasure to read, but this one really was a pleasure to read: there’s something viscerally satisfying about seeing so many important constraints manifest so cleanly.

I’ve talked before about the difference between planar and non-planar theories. Planar theories end up being simpler, and in the case of N=4 super Yang-Mills this results in powerful symmetries that let us do much more complicated calculations. Non-planar theories are more complicated, but necessary for understanding gravity. Dual Conformal Symmetry, Integration-by-Parts Reduction, Differential Equations and the Nonplanar Sector, a new paper by Zvi Bern, Michael Enciso, Harald Ita, and Mao Zeng, works on bridging the gap between these two worlds.

Most of the paper is concerned with using some of the symmetries of N=4 super Yang-Mills in other, more realistic (but still planar) theories. The idea is that even if those symmetries don’t hold one can still use techniques that respect those symmetries, and those techniques can often be a lot cleaner than techniques that don’t. This is probably the most practically useful part of the paper, but the part I was most curious about is in the last few sections, where they discuss non-planar theories. For a while now I’ve been interested in ways to treat a non-planar theory as if it were planar, to try to leverage the powerful symmetries we have in planar N=4 super Yang-Mills elsewhere. Their trick is surprisingly simple: they just cut the diagram open! Oddly enough, they really do end up with similar symmetries using this method. I still need to read this in more detail to understand its limitations, since deep down it feels like something this simple couldn’t possibly work. Still, if anything like the symmetries of planar N=4 holds in the non-planar case there’s a lot we could do with it.

There are a bunch of other interesting recent papers that I haven’t had time to read. Some look like they might relate to weird properties of N=4 super Yang-Mills, others say interesting things about the interconnected web of theories tied together by their behavior when a particle becomes “soft”. Another presents a method for dealing with elliptic functions, one of the main obstructions to applying my hexagon function technique to more situations. And of course I shouldn’t fail to mention a paper by my colleague Carlos Cardona, applying amplitudes techniques to AdS/CFT. Overall, a lot of interesting stuff in a short span of time. I should probably get back to reading it!


The Multiverse Can Only Kill Physics by Becoming Physics

I’m not a fan of the multiverse. I think it’s over-hyped, way beyond its current scientific support.

But I don’t think it’s going to kill physics.

By “the multiverse” I’m referring to a group of related ideas. There’s the idea that we live in a vast, varied universe, with different physical laws in different regions. Relatedly, there’s the idea that the properties of our region aren’t typical of the universe as a whole, just typical of places where life can exist. It may be that in most of the universe the cosmological constant is enormous, but if life can only exist in places where it is tiny then a tiny cosmological constant is what we’ll see. That sort of logic is called anthropic reasoning. If it seems strange, think about a smaller scale: there are many planets in the universe, but only a small number of them can support life. Still, we shouldn’t be surprised that we live on a planet that can support life: if it couldn’t, we wouldn’t live here!

If we really do live in a multiverse, though, some of what we think of as laws of physics are just due to random chance. Maybe the quarks have the masses they do not for some important reason, but just because they happened to end up that way in our patch of the universe.

This seems to have depressing implications. If the laws of physics are random, or just consequences of where life can exist, then what’s left to discover? Why do experiments at all?

Well, why not ask the geoscientists?


These guys

We might live in one universe among many, but we definitely live on one planet among many. And somehow, this realization hasn’t killed geoscience.

That’s because knowing we live on a random planet doesn’t actually tell us very much.

Now, I’m not saying you can’t do anthropic reasoning about the Earth. For example, it looks like an active system of plate tectonics is a necessary ingredient for life. Even if plate tectonics is rare, we shouldn’t be surprised to live on a planet that has it.

Ok, so imagine it’s 1900, before Wegener proposed continental drift. Scientists believe there are many planets in the universe, that we live in a “multiplanet”. Could you predict plate tectonics?

Even knowing that we live on one of the few planets that can support life, you don’t know how it supports life. Even living in a “multiplanet”, geoscience isn’t dead. The specifics of our Earth are still going to teach you something important about how planets work.

Physical laws work the same way. I’ve said that the masses of the quarks could be random, but it’s not quite that simple. The underlying reasons why the masses of the quarks are what they are could be random: the specifics of how six extra dimensions happened to curl up in our region of the universe, for example. But there’s important physics in between: the physics of how those random curlings of space give rise to quark masses. There’s a mechanism there, and we can’t just pick one out of a hat or work backwards to it anthropically. We have to actually go out and discover the answer.

Similarly, we don’t know automatically which phenomena are “random”, which are “anthropic”, and which are required by some deep physical principle. Even in a multiverse, we can’t assume that everything comes down to chance, we only know that some things will, much as the geoscientists don’t know what’s unique to Earth and what’s true of every planet without actually going out and checking.

You can even find a notion of “naturalness” here, if you squint. In physics, we find phenomena like the mass of the Higgs “unnatural”, they’re “fine-tuned” in a way that cries out for an explanation. Normally, we think of this in terms of a hypothetical “theory of everything”: the more “fine-tuned” something appears, the harder it would be to explain it in a final theory. In a multiverse, it looks like we’d have to give up on this, because even the most unlikely-looking circumstance would happen somewhere, especially if it’s needed for life.

Once again, though, imagine you’re a geoscientist. Someone suggests a ridiculously fine-tuned explanation for something: perhaps volcanoes only work if they have exactly the right amount of moisture. Even though we live on one planet in a vast universe, you’re still going to look for simpler explanations before you move on to more complicated ones. It’s human nature, and by and large it’s the only way we’re capable of doing science. As physicists, we’ve papered this over with technical definitions of naturalness, but at the end of the day even in a multiverse we’ll still start with less fine-tuned-looking explanations and only accept the fine-tuned ones when the evidence forces us to. It’s just what people do.

The only way for anthropic reasoning to get around this, to really make physics pointless once and for all, is if it actually starts making predictions. If anthropic reasoning in physics can be made much stronger than anthropic reasoning in geoscience (which, as mentioned, didn’t predict tectonic plates until a century after their discovery) then maybe we can imagine getting to a point where it tells us what particles we should expect to discover, and what masses they should have.

At that point, though, anthropic reasoning won’t have made physics pointless: it will have become physics.

If anthropic reasoning is really good enough to make reliable, falsifiable predictions, then we should be ecstatic! I don’t think we’re anywhere near that point, though some people are earnestly trying to get there. But if it really works out, then we’d have a powerful new method to make predictions about the universe.


Ok, so with all of this said, there is one other worry.

Karl Popper criticized Marxism and Freudianism for being unfalsifiable. In both disciplines, there was a tendency to tell what were essentially “just-so stories”. They could “explain” any phenomenon by setting it in their framework and explaining how it came to be “just so”. These explanations didn’t make new predictions, and different people often ended up coming up with different explanations with no way to distinguish between them. They were stories, not scientific hypotheses. In more recent times, the same criticism has been made of evolutionary psychology. In each case the field is accused of being able to justify anything and everything in terms of its overly ambiguous principles, whether dialectical materialism, the unconscious mind, or the ancestral environment.


Or an elephant’s ‘satiable curtiosity

You’re probably worried that this could happen to physics. With anthropic reasoning and the multiverse, what’s to stop physicists from just proposing some “anthropic” just-so-story for any evidence we happen to find, no matter what it is? Surely anything could be “required for life” given a vague enough argument.

You’re also probably a bit annoyed that I saved this objection for last. I know that for many people, this is precisely what you mean when you say the multiverse will “kill physics”.

I’ve saved this for last for a reason though. It’s because I want to point out something important: this outcome, that our field degenerates into just-so-stories, isn’t required by the physics of the multiverse. Rather, it’s a matter of sociology.

If we hold anthropic reasoning to the same standards as the rest of physics, then there’s no problem: if an anthropic explanation doesn’t make falsifiable predictions then we ignore it. The problem comes if we start loosening our criteria, start letting people publish just-so-stories instead of real science.

This is a real risk! I don’t want to diminish that. It’s harder than it looks for a productive academic field to fall into bullshit, but just-so-stories are a proven way to get there.

What I want to emphasize is that we’re all together in this. We all want to make sure that physics remains scientific. We all need to be vigilant, to prevent a culture of just-so-stories from growing. Regardless of whether the multiverse is the right picture, and regardless of how many annoying TV specials they make about it in the meantime, that’s the key: keeping physics itself honest. If we can manage that, nothing we discover can kill our field.

Thoughts on Polchinski’s Memoir

I didn’t get a chance to meet Joseph Polchinski when I was visiting Santa Barbara last spring. At the time, I heard his health was a bit better, but he still wasn’t feeling well enough to come in to campus. Now that I’ve read his memoir, I almost feel like I have met him. There’s a sense of humor, a diffidence, and a passion for physics that shines through the pages.

The following are some scattered thoughts inspired by the memoir:


A friend of mine once complained to me that in her field grad students all brag about the colleges they went to. I mentioned that in my field your undergrad never comes up…unless it was Caltech. For some reason, everyone I’ve met who went to Caltech is full of stories about the place, and Polchinski is no exception. Speaking as someone who didn’t go there, it seems like Caltech has a profound effect on its students that other places don’t.


Polchinski mentions hearing stories about geniuses of the past, and how those stories helped temper some of his youthful arrogance. There’s an opposite effect that’s also valuable: hearing stories like Polchinski’s, his descriptions of struggling with anxiety and barely publishing and “not really accomplishing anything” till age 40, can be a major comfort to those of us who worry we’ve fallen behind in the academic race. That said, it’s important not to take these things too far: times have changed, you’re not Polchinski, and much like his door-stealing trick at Caltech getting a postdoc without any publications is something you shouldn’t try at home. Even Witten’s students need at least one.


Last week I was a bit puzzled by nueww’s comment, a quote from Polchinski’s memoir which distinguishes “math of the equations” from “math of the solutions”, attributing the former to physicists and the latter to mathematicians. Reading the context in the memoir and the phrase’s origin in a remark by Susskind cleared up a bit, but still left me uneasy. I only figured out why after Lubos Motl posted about it: it doesn’t match my experience of mathematicians at all!

If anything, I think physicists usually care more about the “solutions” than mathematicians do. In my field, often a mathematician will construct some handy basis of functions and then frustrate everyone by providing no examples of how to use them. In the wider math community I’ve met graph theorists who are happy to prove something is true for all graphs of size 10^{10^10} and larger, not worrying about the vast number of graphs where it fails because it’s just a finite number of special cases. And I don’t think this is just my experience: a common genre of jokes revolve around mathematicians proving a solution exists and then not bothering to do anything with it (for example, see the joke with the hotel fire here).

I do think there’s a meaningful sense in which mathematicians care about details that we’re happy to ignore, but “solutions” versus “equations” isn’t really the right axis. It’s something more like “rigor” versus “principles”. Mathematicians will often begin a talk by defining a series of maps between different spaces, carefully describing where they are and aren’t valid. A physicist might just write down a function. That sort of thing is dangerous in mathematics: there are always special, pathological cases that make careful definitions necessary. In physics, those cases rarely come up, and when they do there’s often a clear physical problem that brings them to the forefront. We have a pretty good sense of when we need rigor, and when we don’t we’re happy to lay things out without filling in the details, putting a higher priority on moving forward and figuring out the basic principles underlying reality.


Polchinski talks a fair bit about his role in the idea of the multiverse, from hearing about Weinberg’s anthropic argument to coming to terms with the string landscape. One thing his account makes clear is how horrifying the concept seemed at first: how the idea that the parameters of our universe might just be random could kill science and discourage experimentalists. This touches on something that I think gets lost in arguments about the multiverse: even the people most involved in promoting the multiverse in public aren’t happy about it.

It also sharpened my thinking about the multiverse a bit. I’ve talked before about how I don’t think the popularity of the multiverse is actually going to hurt theoretical physics as a field. Polchinski’s worries made me think about the experimental side of the equation: why do experiments if the world might just be random? I think I have a clearer answer to this now, but it’s a bit long, so I’ll save it for a future post.


One nice thing about these long-term accounts is you get to see how much people shift between fields over time. Polchinski didn’t start out working in string theory, and most of the big names in my field, like Lance Dixon and David Kosower, didn’t start out in scattering amplitudes. Academic careers are long, and however specialized we feel at any one time we can still get swept off in a new direction.


I’m grateful for this opportunity to “meet” Polchinski, if only through his writing. His is a window on the world of theoretical physics that is all too rare, and valuable as a result.

On the Care and Feeding of Ideas

I read Zen and the Art of Motorcycle Maintenance in high school. It’s got a reputation for being obnoxiously mystical, but one of its points seemed pretty reasonable: the claim that the hard part of science, and the part we understand the least, is coming up with hypotheses.

In some sense, theoretical physics is all about hypotheses. By this I don’t mean that we just say “what if?” all the time. I mean that in theoretical physics most of the work is figuring out the right way to ask a question. Phrase your question in the right way and the answer becomes obvious (or at least, obvious after a straightforward calculation). Because our questions are mathematical, the right question can logically imply its own solution.

From the point of view of “Zen and the Art”, as well as most non-scientists I’ve met, this part is utterly mysterious. The ideas you need here seem like they can’t come from hard work or careful observation. In order to ask the right questions, you just need to be “smart”.

In practice, I’ve noticed there’s more to it than that. We can’t just sit around and wait for an idea to show up. Instead, as physicists we develop a library of tricks, often unstated, that let us work towards the ideas we need.

Sometimes, this involves finding simpler cases, working with them until we understand the right questions to ask. Sometimes it involves doing numerics, or using crude guesses, not because either method will give the final answer but because it will show what the answer should look like. Sometimes we need to rephrase the problem many times, in many different contexts, before we happen on one that works. Most of this doesn’t end up in published papers, so in the end we usually have to pick it up from experience.

Along the way, we often find tricks to help us think better. Mostly this is straightforward stuff: reminders to keep us on-task, keeping our notes organized and our code commented so we have a good idea of what we were doing when we need to go back to it. Everyone has their own personal combination of these things in the background, and they’re rarely discussed.

The upshot is that coming up with ideas is hard work. We need to be smart, sure, but that’s not enough by itself: there are a lot of smart people who aren’t physicists after all.

With all that said, some geniuses really do seem to come up with ideas out of thin air. It’s not the majority of the field: we’re not the idiosyncratic Sheldon Coopers everyone seems to imagine. But for a few people, it really does feel like there’s something magical about where they get their ideas. I’ve had the privilege of working with a couple people like this, and the way they think sometimes seems qualitatively different from our usual way of building ideas. I can’t see any of the standard trappings, the legacy of partial results and tricks of thought, that would lead to where they end up. That doesn’t mean they don’t use tricks just like the rest of us, in the end. But I think genius, if it means anything at all, is thinking in a novel enough way that from the outside it looks like magic.

Most of the time, though, we just need to hone our craft. We build our methods and shape our minds as best we can, and we get better and better at the central mystery of science: asking the right questions.

Topic Conferences, Place Conferences

I spent this week at Current Themes in High Energy Physics and Cosmology, a conference at the Niels Bohr Institute.

Most conferences focus on a particular topic. Usually the broader the topic, the bigger the conference. A workshop on flux tubes is smaller than Amplitudes, which is smaller than Strings, which is smaller than the March Meeting of the American Physical Society.

“Current Themes in High Energy Physics and Cosmology” sounds like a very broad topic, but it was a small conference. The reason why is that it wasn’t a “topic conference”, it was a “place conference”.

Most conferences focus on a topic, but some are built around a place. These conferences are hosted by a particular institute year after year. Sometimes each year has a loose theme (for example, the Simons Summer Workshop this year focused on theories without supersymmetry) but sometimes no attempt is made to tie the talks together (“current themes”).

Instead of a theme, the people who go to these conferences are united by their connections to the institute. Some of them have collaborators there, or worked there in the past. Others have been coming for many years. Some just happened to be in the area.

While they may seem eclectic, “place” conferences have a valuable role: they help to keep our interests broad. In physics, there’s a natural tendency to specialize. Left alone, we end up reading papers and going to talks only when they’re directly relevant for what we’re working on. By doing this we lose track of the wider field, losing access to the insights that come from different perspectives and methods.

“Place” conferences, like seminars, help pull things in the other direction. When you’re hearing talks from “everyone connected to the Simons Center” or “everyone connected to the Niels Bohr Institute”, you’re exposed to a much broader range of topics than a conference for just your sub-field. You get a broad overview of what’s going on in the field, but unlike a big conference like Strings there are few enough people that you can actually talk to everyone.

Physicists’ attachment to places is counter-intuitive. We’re studying mathematical truths and laws of nature, surely it shouldn’t matter where we work. In practice, though, we’re still human. Out of the vast span of physics we still pick our interests based on the people around us. That’s why places, why institutes with a wide range of excellent people, are so important: they put our social instincts to work studying the universe.

Textbook Review: Exploring Black Holes

I’m bringing a box of textbooks with me to Denmark. Most of them are for work: a few Quantum Field Theory texts I might use, a Complex Analysis book for when I inevitably forget how to do contour integration.

One of the books, though, is just for fun.


Exploring Black Holes is an introduction to general relativity for undergraduates. The book came out of a collaboration between Edwin F. Taylor, known for his contributions to physics teaching, and John Archibald Wheeler, who among a long list of achievements was responsible for popularizing the term “black hole”. The result is something quite unique: a general relativity course that requires no math more advanced than calculus, and no physics more advanced than special relativity.

It does this by starting, not with the full tensor-riddled glory of Einstein’s equations, but with specialized solutions to those equations, mostly the Schwarzschild solution that describes space around spherical objects (including planets, stars, and black holes). From there, it manages to introduce curved space in a way that is both intuitive and naturally grows out of what students learn about special relativity. It really is the kind of course a student can take right after their first physics course, and indeed as an undergrad that’s exactly what I did.

With just the Schwarzchild solution and its close relatives, you can already answer most of the questions young students have about general relativity. In a series of “projects”, the book explores the corrections GR demands of GPS satellites, the process of falling into a black hole, the famous measurement of the advance of the perihelion of mercury, the behavior of light in a strong gravitational field, and even a bit of cosmology. In the end the students won’t know the full power of the theory, but they’ll get a taste while building valuable physical intuition.

Still, I wouldn’t bring this book with me if it was just an excellent undergraduate textbook. Exploring Black Holes is a great introduction to general relativity, but it also has a hilarious not-so-hidden agenda: inspiring future astronauts to jump into black holes.

“Nowhere could life be simpler or more relaxed than in a free-float frame, such as an unpowered spaceship falling toward a black hole.” – pg. 2-31

The book is full of quotes like this. One of the book’s “projects” involves computing what happens to an astronaut who falls into a black hole. The book takes special care to have students calculate that “spaghettification”, the process by which the tidal forces of a black hole stretch infalling observers into spaghetti, is surprisingly completely painless: the amount of time you experience it is always less than the amount of time it takes light (and thus also pain) to go from your feet to your head, for any (sufficiently calm) black hole.

Why might Taylor and Wheeler want people of the future to jump into black holes? As the discussion on page B-3 of the book describes, the reason is on one level an epistemic one. As theorists, we’d like to reason about what lies inside the event horizon of black holes, but we face a problem: any direct test would be trapped inside, and we would never know the result, which some would argue makes such speculation unscientific. What Taylor and Wheeler point out is that it’s not quite true that no-one would know the results of such a test: if someone jumped into a black hole, they would be able to test our reasoning. If a whole scientific community jumped in, then the question of what is inside a black hole is from their perspective completely scientific.

Of course, I don’t think Taylor and Wheeler seriously thought their book would convince its readers to jump into black holes. For one, it’s unlikely anyone reading the book will get a chance. Still, I suspect that the idea that future generations might explore black holes gave Taylor and Wheeler some satisfaction, and a nice clean refutation of those who think physics inside the horizon is unscientific. Seeing as the result was an excellent textbook full of hilarious prose, I can’t complain.