Four Gravitons in China

I’m in China this week, at the School and Workshop on Amplitudes in Beijing 2016.


It’s a little chilly this time of year, so the dragons have accessorized

A few years back, I mentioned that there didn’t seem to be many amplitudeologists in Asia. That’s changed quite a lot over just the last few years. Song He and Yu-tin Huang went from postdocs in the west to faculty positions in China and Taiwan, respectively, while Bo Feng’s group in China has expanded. As a consequence, there’s now a substantial community here. This is the third “Amplitudes in Asia” conference, with past years meeting in Hong Kong and Taipei.

The “school” part of the conference was last week. I wasn’t here, but the students here seem to have enjoyed it a lot. This week is the “workshop” part, and there have been talks on a variety of parts of amplitudes. Nima showed up on Wednesday and managed to talk for his usual impressively long amount of time, finishing with a public lecture about the future of physics. The talk was ostensibly about why China should build the next big collider, but for the most part it ended up as a more general talk about exciting open questions in high energy physics. The talks were recorded, so they should be online at some point.

Jury-Rigging: The Many Uses of Dropbox

I’ll be behind the Great Firewall of China next week, so I’ve been thinking about various sites I won’t be able to access. Prominent among them is Dropbox, a service that hosts files online.


A helpful box to drop things in

What do physicists do with Dropbox? Quite a lot.

For us, Dropbox is a great way to keep collaborations on the same page. By sharing a Dropbox folder, we can share research programs, mathematical expressions, and paper drafts. It makes it a lot easier to keep one consistent version of a document between different people, and it’s a lot simpler than emailing files back and forth.

All that said, Dropbox has its drawbacks. You still need to be careful not to have two people editing the same thing at the same time, lest one overwrite the other’s work. You’ve got the choice between editing in place, making everyone else receive notifications whenever the files change, or editing in a separate folder, and having to be careful to keep it coordinated with the shared one.

Programmers will know there are cleaner solutions to these problems. GitHub is designed to share code, and you can work together on a paper with ShareLaTeX. So why do we use Dropbox?

Sometimes, it’s more important for a tool to be easy and universal, even if it doesn’t do everything you want. GitHub and ShareLaTeX might solve some of the problems we have with Dropbox, but they introduce extra work too. Because no one disadvantage of Dropbox takes up too much time, it’s simpler to stick with it than to introduce a variety of new services to fill the same role.

This is the source of a lot of jury-rigging in science. Our projects aren’t often big enough to justify more professional approaches: usually, something hacked together out of what’s available really is the best choice.

For one, it’s why I use wordpress. is not a great platform for professional blogging: it doesn’t give you a lot of control without charging, and surprise updates can make using it confusing. However, it takes a lot less effort than switching to something more professional, and for the moment at least I’m not really in a position that justifies the extra work.

Congratulations to Thouless, Haldane, and Kosterlitz!

I’m traveling this week in sunny California, so I don’t have time for a long post, but I thought I should mention that the 2016 Nobel Prize in Physics has been announced. Instead of going to LIGO, as many had expected, it went to David Thouless, Duncan Haldane, and Michael Kosterlitz. LIGO will have to wait for next year.

Thouless, Haldane, and Kosterlitz are condensed matter theorists. While particle physics studies the world at the smallest scales and astrophysics at the largest, condensed matter physics lives in between, explaining the properties of materials on an everyday scale. This can involve inventing new materials, or unusual states of matter, with superconductors being probably the most well-known to the public. Condensed matter gets a lot less press than particle physics, but it’s a much bigger field: overall, the majority of physicists study something under the condensed matter umbrella.

This year’s Nobel isn’t for a single discovery. Rather, it’s for methods developed over the years that introduced topology into condensed matter physics.

Topology often gets described in terms of coffee cups and donuts. In topology, two shapes are the same if you can smoothly change one into another, so a coffee cup and a donut are really the same shape.

mug_and_torus_morphMost explanations stop there, which makes it hard to see how topology could be useful for physics. The missing part is that topology studies not just which shapes can smoothly change into each other, but which things, in general, can change smoothly into each other.

That’s important, because in physics most changes are smooth. If two things can’t change smoothly into each other, something special needs to happen to bridge the gap between them.

There are a lot of different sorts of implications this can have. Topology means that some materials can be described by a number that’s conserved no matter what (smooth) changes occur, leading to experiments that see specific “levels” rather than a continuous range of outcomes. It means that certain physical setups can’t change smoothly into other ones, which protects those setups from changing: an idea people are investigating in the quest to build a quantum computer, where extremely delicate quantum states can be disrupted by even the slightest change.

Overall, topology has been enormously important in physics, and Thouless, Haldane, and Kosterlitz deserve a significant chunk of the credit for bringing it into the spotlight.

Ingredients of a Good Talk

It’s one of the hazards of physics that occasionally we have to attend talks about other people’s sub-fields.

Physics is a pretty heavily specialized field. It’s specialized enough that an otherwise perfectly reasonable talk can be totally incomprehensible to someone just a few sub-fields over.

I went to a talk this week on someone else’s sub-field, and was pleasantly surprised by how much I could follow. I thought I’d say a bit about what made it work.

In my experience, a good talk tells me why I should care, what was done, and what we know now.

Most talks start with a Motivation section, covering the why I should care part. If a talk doesn’t provide any motivation, it’s assuming that everyone finds the point of the research self-evident, and that’s a risky assumption.

Even for talks with a Motivation section, though, there’s a lot of variety. I’ve been to plenty of talks where the motivation presented is very sketchy: “this sort of thing is important in general, so we’re going to calculate one”. While that’s technically a motivation, all it does for an outsider is to tell them which sub-field you’re part of. Ideally, a motivation section does more: for a good talk, the motivation should not only say why you’re doing the work, but what question you’re asking and how your work can answer it.

The bulk of any talk covers what was done, but here there’s also varying quality. Bad talks often make it unclear how much was done by the presenter versus how much was done before. This is important not just to make sure the right people get credit, but because it can be hard to tell how much progress has been made. A good talk makes it clear not only what was done, but why it wasn’t done before. The whole point of a talk is to show off something new, so it should be clear what the new thing is.

If those two parts are done well, it becomes a lot easier to explain what we know now. If you’re clear on what question you were asking and what you did to answer it, then you’ve already framed things in those terms, and the rest is just summarizing. If not, you have to build it up from scratch, ending up with the important information packed in to the last few minutes.

This isn’t everything you need for a good talk, but it’s important, and far too many people neglect it. I’ll be giving a few talks next week, and I plan to keep this structure in mind.

The Parable of the Entanglers and the Bootstrappers

There’s been some buzz around a recent Quanta article by K. C. Cole, The Strange Second Life of String Theory. I found it a bit simplistic of a take on the topic, so I thought I’d offer a different one.

String theory has been called the particle physicist’s approach to quantum gravity. Other approaches use the discovery of general relativity as a model: they’re looking for a big conceptual break from older theories. String theory, in contrast, starts out with a technical problem (naive quantum gravity calculations that give infinity) proposes physical objects that could solve the problem (strings, branes), and figures out which theories of these objects are consistent with existing data (originally the five superstring theories, now all understood as parts of M theory).

That approach worked. It didn’t work all the way, because regardless of whether there are indirect tests that can shed light on quantum gravity, particle physics-style tests are far beyond our capabilities. But in some sense, it went as far as it can: we’ve got a potential solution to the problem, and (apart from some controversy about the cosmological constant) it looks consistent with observations. Until actual evidence surfaces, that’s the end of that particular story.

When people talk about the failure of string theory, they’re usually talking about its aspirations as a “theory of everything”. String theory requires the world to have eleven dimensions, with seven curled up small enough that we can’t observe them. Different arrangements of those dimensions lead to different four-dimensional particles. For a time, it was thought that there would be only a few possible arrangements: few enough that people could find the one that describes the world and use it to predict undiscovered particles.

That particular dream didn’t work out. Instead, it became apparent that there were a truly vast number of different arrangements of dimensions, with no unique prediction likely to surface.

By the time I took my first string theory course in grad school, all of this was well established. I was entering a field shaped by these two facts: string theory’s success as a particle-physics style solution to quantum gravity, and its failure as a uniquely predictive theory of everything.

The quirky thing about science: sociologically, success and failure look pretty similar. Either way, it’s time to find a new project.

A colleague of mine recently said that we’re all either entanglers or bootstrappers. It was a joke, based on two massive grants from the Simons Foundation. But it’s also a good way to summarize two different ways string theory has moved on, from its success and from its failure.

The entanglers start from string theory’s success and say, what’s next?

As it turns out, a particle-physics style understanding of quantum gravity doesn’t tell you everything you need to know. Some of the big conceptual questions the more general relativity-esque approaches were interested in are still worth asking. Luckily, string theory provides tools to answer them.

Many of those answers come from AdS/CFT, the discovery that string theory in a particular warped space-time is dual (secretly the same theory) to a more particle-physics style theory on the edge of that space-time. With that discovery, people could start understanding properties of gravity in terms of properties of particle-physics style theories. They could use concepts like information, complexity, and quantum entanglement (hence “entanglers”) to ask deeper questions about the structure of space-time and the nature of black holes.

The bootstrappers, meanwhile, start from string theory’s failure and ask, what can we do with it?

Twisting up the dimensions of string theory yields a vast number of different arrangements of particles. Rather than viewing this as a problem, why not draw on it as a resource?

“Bootstrappers” explore this space of particle-physics style theories, using ones with interesting properties to find powerful calculation tricks. The name comes from the conformal bootstrap, a technique that finds conformal theories (roughly: theories that are the same at every scale) by “pulling itself by its own boostraps”, using nothing but a kind of self-consistency.

Many accounts, including Cole’s, attribute people like the boostrappers to AdS/CFT as well, crediting it with inspiring string theorists to take a closer look at particle physics-style theories. That may be true in some cases, but I don’t think it’s the whole story: my subfield is bootstrappy, and while it has drawn on AdS/CFT that wasn’t what got it started. Overall, I think it’s more the case that the tools of string theory’s “particle physics-esque approach”, like conformal theories and supersymmetry, ended up (perhaps unsurprisingly) useful for understanding particle physics-style theories.

Not everyone is a “boostrapper” or an “entangler”, even in the broad sense I’m using the words. The two groups also sometimes overlap. Nevertheless, it’s a good way to think about what string theorists are doing these days. Both of these groups start out learning string theory: it’s the only way to learn about AdS/CFT, and it introduces the bootstrappers to a bunch of powerful particle physics tools all in one course. Where they go from there varies, and can be more or less “stringy”. But it’s research that wouldn’t have existed without string theory to get it started.

So You Want to Prove String Theory, Part II: How Can QCD Be a String Theory?

A couple weeks back, I had a post about Nima Arkani-Hamed’s talk at Strings 2016. Nima and his collaborators were trying to find what sorts of scattering amplitudes (formulas that calculate the chance that particles scatter off each other) are allowed in a theory of quantum gravity. Their goal was to show that, with certain assumptions, string theory gives the only consistent answer.

At the time, my old advisor Michael Douglas suggested that I might find Zohar Komargodski’s talk more interesting. Now that I’ve finally gotten around to watching it, I agree. The story is cleaner, more conclusive…and it gives me an excuse to say something else I’ve been meaning to talk about.

Zohar Komargodski has a track record of deriving interesting results that are true not just for the sorts of toy models we like to work with but for realistic theories as well. He’s collaborating with amplitudes miracle-worker Simon Caron-Huot (who I’ve collaborated with recently), Amit Sever (one of the integrability wizards who came up with the POPE program) and Alexander Zhiboedov, whose name seems to show up all over the place. Overall, the team is 100% hot young talent, which tends to be a recipe for success.

While Nima’s calculation focuses on gravity, Zohar and company are asking a broader question. They’re looking at any theory with particles of high spin and nonzero mass. Like Nima, they’re looking at scattering amplitudes, in the limit that the forces involved are weak. Unlike Nima, they’re focusing on a particular limit: rather than trying to fix the full form of the amplitude, they’re interested in how it behaves for extreme, unphysical values for the particles’ momenta. Despite being unphysical, this limit can reveal something about how the theory works.

What they figured out is that, for the sorts of theories they’re looking at, the amplitude has to take a particular form in their unphysical limit. In particular, it takes a form that indicates the presence of strings.

What sort of theories are they looking at? What theories have “particles of high spin and nonzero mass”? Well, some are string theories. Others are Yang-Mills theories … theories similar to QCD.

For the experts, I encourage you to watch Zohar’s talk or read the paper for more detail. It’s a fun story that showcases how very general constraints on scattering amplitudes can translate into quite specific statements.

For the non-experts, though, there’s something that may already be confusing. When I’ve talked about Yang-Mills theories before, I’ve talked about them in terms of particles of spin 1. Where did these “higher spin” particles come from? And where are the strings? How can there be strings in a theory that I’ve described as “similar to QCD”?

If I just stuck to the higher spin particles, things could almost stay familiar. The fundamental particles of Yang-Mills theories have spin 1, but these particles can combine into composite particles, which can have higher spin and higher mass. That should be intuitive: in some sense, it’s just like protons, neutrons, and electrons combining to form atoms.

What about the strings? I’ve actually talked about that before, but I’d like to try out a new analogy. Have you ever heard of Conway’s Game of Life?


Not this one!


This one!

Conway’s Game of Life starts with a grid of black and white squares, and evolves in steps, with each square’s color determined by the color of adjacent squares in the last step. “Fundamentally”, the game is just those rules. In practice, though, structure can emerge: a zoo of self-propagating creatures that dance across the screen.

The strings that can show up in Yang-Mills theories are like this. They aren’t introduced directly in the definition of the theory. Instead, they’re consequences: structures that form when you let the rules evolve and see what they create. They’re another description of the theory, one with its own advantages.

When I tell people I’m a theoretical physicist, they inevitably ask me “Have any of your theories been tested?” They’re operating from one idea of what a theoretical physicist does: propose new theories to describe the world, based on available evidence. Lots of theorists do that, they’re called phenomenologists, but it’s not what I do, or what most theorists I interact with day-to-day do.

So I describe what I do, how I test new mathematical techniques to make particle physics calculations faster. And in general, that’s pretty easy for people to understand. Just as they can imagine people out there testing theories, they can imagine people who work to support the others, making tools to make their work easier. But while that’s what I do, it’s not the best description of what most of my colleagues do.

What most theorists I know do is like finding new animals in Conway’s game of life. They start with theories for which we know the rules: well-tested theories like QCD, or well-studied proposals like string theory. They ask themselves, not how they can change the rules, but what results the rules have. They look for structures, and in doing so find new perspectives, learning to see the animals that live on Conway’s black and white grid. (This is something I’ve gestured at before, but this seems like a cleaner framing.)

Doing that, theorists have seen strings in the structure of QCD-like theories. And now Zohar and collaborators have a clean argument that the structures others have seen should show up, not only there, but in a broader class of theories.

This isn’t about whether the world is fundamentally described by string theory, ten dimensions and all. That’s an entirely different topic. What it is is a question about what sorts of structures emerge when we try to describe the world. What it does is show that strings are, in some sense (and, as for Nima, [with some conditions]) inevitable, that they come out of our rules even if we don’t expect them to.

Hexagon Functions IV: Steinmann Harder

It’s paper season! I’ve got another paper out this week, this one a continuation of the hexagon function story.

The story so far:

My collaborators and I have been calculating “six-particle” (two particles collide, four come out, or three collide, three come out…) scattering amplitudes (probabilities that particles scatter) in N=4 super Yang-Mills. We calculate them starting with an ansatz (a guess, basically) made up of a type of functions called hexagon functions: “hexagon” because they’re the right functions for six-particle scattering. We then narrow down our guess by bringing in other information: for example, if two particles are close to lining up, our answer needs to match the one calculated with something called the POPE, so we can throw out guesses that don’t match that. In the end, only one guess survives, and we can check that it’s the right answer.

So what’s new this time?

More loops:

In quantum field theory, most of our calculations are approximate, and we measure the precision in something called loops. The more loops, the closer we are to the exact result, and the more complicated the calculation becomes.

This time, we’re at five loops of precision. To give you an idea of how complicated that is: I store these functions in text files. We’ve got a new, more efficient notation for them. With that, the two-loop functions fit into files around 20KB. Three loops, 500KB. Four, 15MB. And five? 300MB.

So if you want to imagine five loops, think about something that needs to be stored in a 300MB text file.

More insight:

We started out having noticed some weird new symmetries of our old results, so we brought in Simon Caron-Huot, expert on weird new symmetries. He couldn’t figure out that one…but he did notice an entirely different symmetry, one that turned out to have been first noticed in the 60’s, called the Steinmann relations.

The core idea of the Steinmann relations goes back to the old method of calculating amplitudes, with Feynman diagrams. In Feynman diagrams, lines represent particles traveling from one part of the diagram to the other. In a simplified form, the Steinmann conditions are telling us that diagrams can’t take two mutually exclusive shapes at the same time. If three particles are going one way, they can’t also be going another way.


With the Steinmann relations, things suddenly became a whole lot easier. Calculations that we had taken months to do, Simon was now doing in a week. Finally we could narrow things down and get the full answer, and we could do it with clear, physics-based rules.

More bootstrap:

In physics, when we call something a “bootstrap” it’s in reference to the phrase “pull yourself up by your own boostraps”. That impossible task, lifting yourself  with no outside support, is essentially what we do when we “bootstrap”: we do a calculation with no external input, simply by applying general rules.

In the past, our hexagon function calculations always had some sort of external data. For the first time, with the Steinmann conditions, we don’t need that. Every constraint, everything we do to narrow down our guess, is either a general rule or comes out of our lower-loop results. We never need detailed information from anywhere else.

This is big, because it might allow us to avoid loops altogether. Normally, each loop is an approximation, narrowed down using similar approximations from others. If we don’t need the approximations from others, though, then we might not need any approximations at all. For this particular theory, for this toy model, we might be able to actually calculate scattering amplitudes exactly, for any strength of forces and any energy. Nobody’s been able to do that for this kind of theory before.

We’re already making progress. We’ve got some test cases, simpler quantities that we can understand with no approximations. We’re starting to understand the tools we need, the pieces of our bootstrap. We’ve got a real chance, now, of doing something really fundamentally new.

So keep watching this blog, keep your eyes on arXiv: big things are coming.