Valentine’s Day Physics Poem 2017

It’s that time of year again! Valentine’s Day was this week, so to continue this blog’s tradition it’s time for me to post one of my physics poems. I wrote this back before I fully understood quantum field theory, so you’ll have to excuse any inaccuracies in the metaphor (at least on the physics side 😉 ).

 

Perturbation Theory II – Going in Loops

 

In order to interact, two particles must collide.

But a particle is a small thing, moving in its own circles, covering little space in its lonely life.

So we will never interact.

 

But particles emit bosons,

Tiny messengers of force,

Tendrils of interaction.

When these find us,

As they sometimes do,

We can interact.

 

But a boson is a small thing, moving in its own circles, covering little space in its lonely life.

So we will never interact.

 

But each boson has its own retinue,

Particles and their bosons in turn,

Spawned from its self-energy, uncertainty in its own nature,

Each, unobserved, with infinite possibilities.

 

And to compensate for these infinities

The charged nature of our naked selves

Must in turn be infinitely repressed.

 

So perhaps interaction would still be understandable

For those with simple repressions,

Matching constraints.

 

But we are not such people.

Complicated beings, we spin and twirl.

We hide our charge behind an infinity of possible terms,

So we can never know

If we will interact.

 

But perhaps we are not simply isolated points.

Perhaps we have extension,

Dimension,

Reach, beyond the confines of zero-dimensional selves.

And with that reach

Perhaps we can understand.

Perhaps

We can interact.

Boltzmann Brains, Evil Demons, and Why It’s Occasionally a Good Idea to Listen to Philosophers

There’s been a bit of a buzz recently about a paper Sean Carroll posted to the arXiv, “Why Boltzmann Brains Are Bad”. The argument in the paper isn’t new, it’s something Carroll has been arguing for a long time, and the arXiv post was just because he had been invited to contribute a piece to a book on Current Controversies in Philosophy of Science.

(By the way: in our field, invited papers and conference proceedings are almost always reviews of old work, not new results. If you see something on arXiv and want to know whether it’s actually new work, the “Comments:” section will almost always mention this.)

While the argument isn’t new, it is getting new attention. And since I don’t think I’ve said much about my objections to it, now seems like a good time to do so.

Carroll’s argument is based on theoretical beings called Boltzmann brains. The idea is that if you wait a very very long time in a sufficiently random (“high-entropy”) universe, the matter in that universe will arrange itself in pretty much every imaginable way, if only for a moment. In particular, it will eventually form a brain, or enough of a brain to have a conscious experience. Wait long enough, and you can find a momentary brain having any experience you want, with any (fake) memories you want. Long enough, and you can find a brain having the same experience you are having right now.

So, Carroll asks, how do you know you aren’t a Boltzmann brain? If the universe exists for long enough, most of the beings having your current experiences would be Boltzmann brains, not real humans. But if you really are a Boltzmann brain, then you can’t know anything about the universe at all: everything you think are your memories are just random fluctuations with no connection to the real world.

Carroll calls this sort of situation “cognitively unstable”. If you reason scientifically that the universe must be full of Boltzmann brains, then you can’t rule out that you could be a Boltzmann brain, and thus you shouldn’t accept your original reasoning.

The only way out, according to Carroll, is if we live in a universe that will never contain Boltzmann brains, for example one that won’t exist in its current form long enough to create them. So from a general concern about cognitive instability, Carroll argues for specific physics. And if that seems odd…well, it is.

For the purpose of this post, I’m going to take for granted the physics case: that a sufficiently old and random universe would indeed produce Boltzmann brains. That’s far from uncontroversial, and if you’re interested in that side of the argument (and have plenty of patience for tangents and Czech poop jokes) Lubos Motl posted about it recently.

Instead, I’d like to focus on the philosophical side of the argument.

Let’s start with intro philosophy, and talk about Descartes.

Descartes wanted to start philosophy from scratch by questioning everything he thought he knew. In one of his arguments, he asks the reader to imagine an evil demon.

315grazthrone

Probably Graz’zt. It’s usually Graz’zt.

Descartes imagines this evil demon exercising all its power to deceive. Perhaps it could confound your senses with illusions, or modify your memories. If such a demon existed, there would be no way to know if anything you believed or reasoned about the world was correct. So, Descartes asked, how do you know you’re not being deceived by an evil demon right now?

Amusingly, like Carroll, Descartes went on to use this uncertainty to argue for specific proposals in physics: in Descartes’ case, everything from the existence of a benevolent god to the idea that gravity was caused by a vortex of fluid around the sun.

Descartes wasn’t the last to propose this kind of uncertainty, and philosophers have asked more sophisticated questions over the years challenging the idea that it makes sense to reason from the past about the future at all.

Carroll is certainly aware of all of this. But I suspect he doesn’t quite appreciate the current opinion philosophers have on these sorts of puzzles.

The impression I’ve gotten from philosophers is that they don’t take this kind of “cognitive instability” very seriously anymore. There are specialists who still work on it, and it’s still of historical interest. But the majority of philosophers have moved on.

How did they move on? How have they dismissed these kinds of arguments?

That varies. Philosophers don’t tend to have the kind of consensus that physicists usually do.

Some reject them on pragmatic grounds: science works, even if we can’t “justify” it. Some use a similar argument to Carroll’s, but take it one step back, arguing that we shouldn’t worry that we could be deceived by an evil demon or be a Boltzmann brain because those worries by themselves are cognitively unstable. Some bite the bullet, that reasoning is impossible, then just ignore it and go on with their lives.

The common trait of all of these rejections, though? They don’t rely on physics.

Philosophers don’t argue “evil demons are impossible, therefore we can be sure we’re not deceived by evil demons”. They don’t argue “dreams are never completely realistic, so we can’t just be dreaming right now”.

And they certainly don’t try to argue the reverse: that consistency means there can never be evil demons, or never be realistic dreams.

I was on the debate team in high school. One popular tactic was called the “non-unique”. If your opponent argued that your plan had some negative consequences, you could argue that those consequences would happen regardless of whether you got to enact your plan or not: that the consequences were non-unique.

At this point, philosophers understand that cognitive instability and doubt are “non-unique”. No matter the physics, no matter how the world looks, it’s still possible to argue that reasoning isn’t justified, that even the logic we used to doubt the world in the first place could be flawed.

Carroll’s claim to me seems non-unique. Yes, in a universe that exists for a long time you could be a Boltzmann brain. But even if you don’t live in such a universe, you could still be a brain in a jar or a simulation. You could still be deceived by an “evil demon”.

And so regardless, you need the philosophers. Regardless, you need some argument that reasoning works, that you can ignore doubt. And once you’re happy with that argument, you don’t have to worry about Boltzmann brains.

Thoughts from the Winter School

There are two things I’d like to talk about this week.

First, as promised, I’ll talk about what I worked on at the PSI Winter School.

Freddy Cachazo and I study what are called scattering amplitudes. At first glance, these are probabilities that two subatomic particles scatter off each other, relevant for experiments like the Large Hadron Collider. In practice, though, they can calculate much more.

For example, let’s say you have two black holes circling each other, like the ones LIGO detected. Zoom out far enough, and you can think of each one as a particle. The two particle-black holes exchange gravitons, and those exchanges give rise to the force of gravity between them.

bhmerger_ligo_3600

In the end, it’s all just particle physics.

 

Based on that, we can use our favorite scattering amplitudes to make predictions for gravitational wave telescopes like LIGO.

There’s a bit of weirdness to this story, though, because these amplitudes don’t line up with predictions in quite the way we’re used to. The way we calculate amplitudes involves drawing diagrams, and those diagrams have loops. Normally, each “loop” makes the amplitude more quantum-mechanical. Only the diagrams with no loops (“tree diagrams”) come from classical physics alone.

(Here “classical physics” just means “not quantum”: I’m calling general relativity “classical”.)

For this problem, we only care about classical physics: LIGO isn’t sensitive enough to see quantum effects. The weird thing is, despite that, we still need loops.

(Why? This is a story I haven’t figured out how to tell in a non-technical way. The technical explanation has to do with the fact that we’re calculating a potential, not an amplitude, so there’s a Fourier transformation, and keeping track of the dimensions entails tossing around some factors of Planck’s constant. But I feel like this still isn’t quite the full story.)

So if we want to make predictions for LIGO, we want to compute amplitudes with loops. And as amplitudeologists, we should be pretty good at that.

As it turns out, plenty of other people have already had that idea, but there’s still room for improvement.

Our time with the students at the Winter School was limited, so our goal was fairly modest. We wanted to understand those other peoples’ calculations, and perhaps to think about them in a slightly cleaner way. In particular, we wanted to understand why “loops” are really necessary, and whether there was some way of understanding what the “loops” were doing in a more purely classical picture.

At this point, we feel like we’ve got the beginning of an idea of what’s going on. Time will tell whether it works out, and I’ll update you guys when we have a more presentable picture.


 

Unfortunately, physics wasn’t the only thing I was thinking about last week, which brings me to my other topic.

This blog has a fairly strong policy against talking politics. This is for several reasons. Partly, it’s because politics simply isn’t my area of expertise. Partly, it’s because talking politics tends to lead to long arguments in which nobody manages to learn anything. Despite this, I’m about to talk politics.

Last week, citizens of Iran, Iraq, Libya, Somalia, Sudan, Syria and Yemen were barred from entering the US. This included not only new visa applicants, but also those who already have visas or green cards. The latter group includes long-term residents of the US, many of whom were detained in airports and threatened with deportation when their flights arrived shortly after the ban was announced. Among those was the president of the Graduate Student Organization at my former grad school.

A federal judge has blocked parts of the order, and the Department of Homeland Security has announced that there will be case-by-case exceptions. Still, plenty of people are stuck: either abroad if they didn’t get in in time, or in the US, afraid that if they leave they won’t be able to return.

Politics isn’t in my area of expertise. But…

I travel for work pretty often. I know how terrifying and arbitrary border enforcement can be. I know how it feels to risk thousands of dollars and months of planning because some consulate or border official is having a bad day.

I also know how essential travel is to doing science. When there’s only one expert in the world who does the sort of work you need, you can’t just find a local substitute.

And so for this, I don’t need to be an expert in politics. I don’t need a detailed case about the risks of terrorism. I already know what I need to, and I know that this is cruel.

And so I stand in solidarity with the people who were trapped in airports, and those still trapped abroad and trapped in the US. You have been treated cruelly, and you shouldn’t have been. Hopefully, that sort of message can transcend politics.

 

One final thing: I’m going to be a massive hypocrite and continue to ban political comments on this blog. If you want to talk to me about any of this (and you think one or both of us might actually learn something from the exchange) please contact me in private.

PSI Winter School 2017

It’s that time of year again! Perimeter Scholars International, Perimeter’s Master’s program in theoretical physics, is holding its Winter School up in Ontario’s copious backwoods.

img_20170125_161426

Ominous antlered snowmen included

Like last year, the students are spending mornings and evenings doing research supervised by PI grad students, postdocs, and faculty, and the afternoons on a variety of winter activities, including skiing and snowshoeing.

Last year, my group worked on the “POPE”, a proposal by Basso, Sever, and Vieira, and we ended up getting a paper out of it. This year, I’ve teamed up with Freddy Cachazo on a gravity-related project. We’ve got a group of enthusiastic students and are making decent progress, I’ll have more to say about it next week.

Digging up Variations

The best parts of physics research are when I get a chance to push out into the unknown, doing calculations no-one has done before. Sometimes, though, research is more…archeological.

2016-05-441-134ap_archeologyexcavation_loropc3a9ni_ruins_nr-loropc3a9niponi_prv-bf_sun15may2016-1119h

Pictured: not what I signed up for

Recently, I’ve been digging through a tangle of papers, each of which calculates roughly the same thing in a slightly different way. Like any good archeologist, I need to figure out not just what the authors of these papers were doing, but also why.

(As a physicist, why do I care about “why”? In this case, it’s because I want to know which of the authors’ choices are worth building on. If I can figure out why they made the choices they did, I can decide whether I share their motivations, and thus which aspects of their calculations are useful for mine.)

My first guess at “why” was a deeply cynical one. Why would someone publish slight variations on an old calculation? To get more publications!

This is a real problem in science. In certain countries in particular, promotions and tenure are based not on honestly assessing someone’s work but on quick and dirty calculations based on how many papers they’ve published. This motivates scientists to do the smallest amount possible in order to get a paper out.

That wasn’t what was happening in these papers, though. None of the authors lived in those kinds of countries, and most were pretty well established people: not the sort who worry about keeping up with publications.

So I put aside my cynical first-guess, and actually looked at the papers. Doing that, I found a more optimistic explanation.

These authors were in the process of building research programs. Each had their own long-term goal, a set of concepts and methods they were building towards. And each stopped along the way, to do another variation on this well-trod calculation. They weren’t doing this just because they needed a paper, or just because they could. They were trying to sift out insights, to debug their nascent research program in a well-understood case.

Thinking about it this way helped untwist the tangle of papers. The confusion of different choices suddenly made sense, as the result of different programs with different goals. And in turn, understanding which goals contributed to which papers helped me sort out which goals I shared, and which ideas would turn out to be helpful.

Would it have been less confusing if some of these people had sat on their calculations, and not published? Maybe at first. But in the end, the variations help, giving me a clearer understanding of the whole.

Next Year in Copenhagen!

As some of you might be aware, this is my last year at the Perimeter Institute. It’s been great, but the contract was only for three years, and come August I’ll be heading elsewhere.

Determining that “elsewhere” was the subject of an extensive job search. Now that the search has resolved, I can tell you that “elsewhere” is the Niels Bohr International Academy at the Niels Bohr Institute in Copenhagen, where I’ll be starting a three-year postdoc job in the fall.

blegdamsvej_forside

Probably in the building on the left

There are some pretty stellar amplitudes people at NBIA, so I’m pretty excited to be going there. It’s going to be a great opportunity to both build on what I’ve been doing and expand beyond. They’re also hiring several other amplitudes-focused postdocs this year, so overall it should be a really fun group.

It’s also a bit daunting. Moving to Canada from the US was reasonably smooth, I could drive most of my things over in a U-Haul truck. Moving to Denmark is going to be quite a bit more complicated. I’ll need to learn a new language and get used to a fairly different culture.

I can take solace in the fact that in some sense I’m retracing my great-grandfather’s journey in the opposite direction. My great-grandfather worked at the Niels Bohr Institute on his way out of Europe in the 1930’s, and made friends with the Bohrs along the way, before coming to the US. I’ll get a chance to explore a piece of family history, and likely collaborate with a Bohr as well.

Popularization as News, Popularization as Signpost

Lubos Motl has responded to my post from last week about the recent Caltech short, Quantum is Calling. His response is pretty much exactly what you’d expect, including the cameos by Salma Hayek and Kaley Cuoco.

The only surprise was his lack of concern for accuracy. Quantum is Calling got the conjecture it was trying to popularize almost precisely backwards. I was expecting that to bother him, at least a little.

Should it bother you?

That depends on what you think Quantum is Calling is trying to do.

Science popularization, even good science popularization, tends to get things wrong. Some of that is inevitable, a result of translating complex concepts to a wider audience.

Sometimes, though, you can’t really chalk it up to translation. Interstellar had some extremely accurate visualizations of black holes, but it also had an extremely silly love-powered tesseract. That wasn’t their attempt to convey some subtle scientific truth, it was just meant to sound cool.

And the thing is, that’s not a bad thing to do. For a certain kind of piece, sounding cool really is the point.

Imagine being an explorer. You travel out into the wilderness and find a beautiful waterfall.

south_falls_silver_falls_state_park

Example:

How do you tell people about it?

One option is the press. The news can cover your travels, so people can stay up to date with the latest in waterfall discoveries. In general, you’d prefer this sort of thing to be fairly accurate: the goal here is to inform people, to give them a better idea of the world around them.

Alternatively, you can advertise. You put signposts up around town pointing toward the waterfall, complete with vivid pictures. Here, accuracy matters a lot less: you’re trying to get people excited, knowing that as they get closer they can get more detailed information.

In science popularization, the “news” here isn’t just news. It’s also blog posts, press releases, and public lectures. It’s the part of science popularization that’s supposed to keep people informed, and it’s one that we hope is mostly accurate, at least as far as possible.

The “signposts”, meanwhile, are things like Interstellar. Their audience is as wide as it can possibly be, and we don’t expect them to get things right. They’re meant to excite people, to get them interested in science. The expectation is that a few students will find the imagery interesting enough to go further, at which point they can learn the full story and clear up any remaining misconceptions.

Quantum is Calling is pretty clearly meant to be a signpost. The inaccuracy is one way to tell, but it should be clear just from the context. We’re talking about a piece with Hollywood stars here. The relative star-dom of Zoe Saldana and Keanu Reeves doesn’t matter, the presence of any mainstream film stars whatsoever means they’re going for the broadest possible audience.

(Of course, the fact that it’s set up to look like an official tie-in to the Star Trek films doesn’t hurt matters either.)

They’re also quite explicit about their goals. The piece’s predecessor has Keanu Reeves send a message back in time, with the goal of inspiring a generation of young scientists to build a future paradise. They’re not subtle about this.

Ok, so what’s the problem? Signposts are allowed to be inaccurate, so the inaccuracy shouldn’t matter. Eventually people will climb up to the waterfall and see it for themselves, right?

What if the waterfall isn’t there?

wonder_mountain_dry_backside_waterfall

Like so:

The evidence for ER=EPR (the conjecture that Quantum is Calling is popularizing) isn’t like seeing a waterfall. It’s more like finding it via surveying. By looking at the slope of nearby terrain and following the rivers, you can get fairly confident that there should be a waterfall there, even if you can’t yet see it over the next ridge. You can then start sending scouts, laying in supplies, and getting ready for a push to the waterfall. You can alert the news, telling journalists of the magnificent waterfall you expect to find, so the public can appreciate the majesty of your achievement.

What you probably shouldn’t do is put up a sign for tourists.

As I hope I made clear in my last post, ER=EPR has some decent evidence. It hasn’t shown that it can handle “foot traffic”, though. The number of researchers working on it is still small. (For a fun but not especially rigorous exercise, try typing “ER=EPR” and “AdS/CFT” into physics database INSPIRE.) Conjectures at this stage are frequently successful, but they often fail, and ER=EPR still has a decent chance of doing so. Tying your inspiring signpost to something that may well not be there risks sending tourists up to an empty waterfall. They won’t come down happy.

As such, I’m fine with “news-style” popularizations of ER=EPR. And I’m fine with “signposts” for conjectures that have shown they can handle some foot traffic. (A piece that sends Zoe Saldana to the holodeck to learn about holography could be fun, for example.) But making this sort of high-profile signpost for ER=EPR feels irresponsible and premature. There will be plenty of time for a Star Trek tie-in to ER=EPR once it’s clear the idea is here to stay.