New Poll: What Would You Like to See More Of?

It’s been a while since I last polled you guys. Back then, I was curious what sorts of backgrounds my readers had. In the end, roughly half of you had some serious background in high-energy physics, while the other half had seen some physics, but not a lot.

This time, I’d like to know what sort of content you want to see. WordPress tells me how well an individual post does, but there isn’t much of a pattern to my best-performing posts beyond the vagaries of whose attention they grab. That’s why I’m asking you what you want to see more of. I’ve split things into vague categories. Feel free to vote for as many as you like, and let me know in the comments if there’s something I missed.

The Way to a Mathematician’s Heart Is through a Pi

Want to win over a mathematician? Bake them a pi.

Of course, presentation counts. You can’t just pour a spew of digits.

1200px-pi_tau_digit_runs-svg

If you have to, at least season it with 9’s

Ideally, you’ve baked your pi at home, in a comfortable physical theory. You lay out a graph to give it structure, then wrap it in algebraic curves before baking under an integration.

(Sometimes you can skip this part. My mathematician will happily eat graphs and ignore the pi.)

At this point, if your motives are pure (or at least mixed Tate), you have your pi. To make it more interesting, be sure to pair with a well-aged Riemann zeta value. With the right preparation, you can achieve a truly cosmic pi.

whirled-pies-54

Fine, that last joke was a bit of a stretch. Hope you had a fun pi day!

Simple Rules Don’t Mean a Simple Universe

It’s always fun when nature surprises you.

This week, the Perimeter Colloquium was given by Laura Nuttall, a member of the LIGO collaboration.

In a physics department, the colloquium is a regularly scheduled talk that’s supposed to be of interest to the entire department. Some are better at this than others, but this one was pretty fun. The talk explored the sorts of questions gravitational wave telescopes like LIGO can answer about the world.

At one point during the talk, Nuttall showed a plot of what happens when a star collapses into a supernova. For a range of masses, the supernova leaves behind a neutron star (shown on the plot in purple). For heavier stars, it instead results in a black hole, a big black region of the plot.

What surprised me was that inside the black region, there was an unexpected blob: a band of white in the middle of the black holes. Heavier than that band, the star forms a black hole. Lighter, it also forms a black hole. But inside?

Nothing. The star leaves nothing behind. It just explodes.

The physical laws that govern collapsing stars might not be simple, but at least they sound straightforward. Stars are constantly collapsing under their own weight, held up only by the raging heat of nuclear fire. If that heat isn’t strong enough, the star collapses, and other forces take over, so the star becomes a white dwarf, or a neutron star. And if none of those forces is strong enough, the star collapses completely, forming a black hole.

Too small, neutron star. Big enough, black hole. It seems obvious. But reality makes things more complicated.

It turns out, if a star is both massive and has comparatively little metal in it, the core of the star can get very very hot. That heat powers an explosion more powerful than a typical star, one that tears the star apart completely, leaving nothing behind that could form a black hole. Lighter stars don’t get as hot, so they can still form black holes, and heavier stars are so heavy they form black holes anyway. But for those specific stars, in the middle, nothing gets left behind.

This isn’t due to mysterious unknown physics. It’s actually been understood for quite some time. It’s a consequence of those seemingly straightforward laws, one that isn’t at all obvious until you do the work and run the simulations and observe the universe and figure it out.

Just because our world is governed by simple laws, doesn’t mean the universe itself is simple. Give it a little room (and several stars’ worth of hydrogen) and it can still surprise you.

What Space Can Tell Us about Fundamental Physics

Back when LIGO announced its detection of gravitational waves, there was one question people kept asking me: “what does this say about quantum gravity?”

The answer, each time, was “nothing”. LIGO’s success told us nothing about quantum gravity, and very likely LIGO will never tell us anything about quantum gravity.

The sheer volume of questions made me think, though. Astronomy, astrophysics, and cosmology fascinate people. They capture the public’s imagination in a way that makes them expect breakthroughs about fundamental questions. Especially now, with the LHC so far seeing nothing new since the Higgs, people are turning to space for answers.

Is that a fair expectation? Well, yes and no.

Most astrophysicists aren’t concerned with finding new fundamental laws of nature. They’re interested in big systems like stars and galaxies, where we know most of the basic rules but can’t possibly calculate all their consequences. Like most physicists, they’re doing the vital work of “physics of decimals”.

At the same time, there’s a decent chunk of astrophysics and cosmology that does matter for fundamental physics. Just not all of it. Here are some of the key areas where space has something important to say about the fundamental rules that govern our world:

 

1. Dark Matter:

Galaxies rotate at different speeds than their stars would alone. Clusters of galaxies bend light that passes by, and do so more than their visible mass would suggest. And when scientists try to model the evolution of the universe, from early images to its current form, the models require an additional piece: extra matter that cannot interact with light. All of this suggests that there is some extra “dark” matter in the universe, not described by our standard model of particle physics.

If we want to understand this dark matter, we need to know more about its properties, and much of that can be learned from astronomy. If it turns out dark matter isn’t really matter after all, if it can be explained by a modification of gravity or better calculations of gravity’s effects, then it still will have important implications for fundamental physics, and astronomical evidence will still be key to finding those implications.

2. Dark Energy (/Cosmological Constant/Inflation/…):

The universe is expanding, and its expansion appears to be accelerating. It also seems more smooth and uniform than expected, suggesting that it had a period of much greater acceleration early on. Both of these suggest some extra quantity: a changing acceleration, a “dark energy”, the sort of thing that can often be explained by a new scalar field like the Higgs.

Again, the specifics: how (and perhaps if) the universe is expanding now, what kinds of early expansion (if any) the shape of the universe suggests, these will almost certainly have implications for fundamental physics.

3. Limits on stable stuff:

Let’s say you have a new proposal for particle physics. You’ve predicted a new particle, but it can’t interact with anything else, or interacts so weakly we’d never detect it. If your new particle is stable, then you can still say something about it, because its mass would have an effect on the early universe. Too many such particles and they would throw off cosmologists’ models, ruling them out.

Alternatively, you might predict something that could be detected, but hasn’t, like a magnetic monopole. Then cosmologists can tell you how many such particles would have been produced in the early universe, and thus how likely we would be to detect them today. If you predict too many particles and we don’t see them, then that becomes evidence against your proposal.

4. “Cosmological Collider Physics”:

A few years back, Nima Arkani-Hamed and Juan Maldacena suggested that the early universe could be viewed as an extremely high energy particle collider. While this collider performed only one experiment, the results from that experiment are spread across the sky, and observed patterns in the early universe should tell us something about the particles produced by the cosmic collider.

People are still teasing out the implications of this idea, but it looks promising, and could mean we have a lot more to learn from examining the structure of the universe.

5. Big Weird Space Stuff:

If you suspect we live in a multiverse, you might want to look for signs of other universes brushing up against our own. If your model of the early universe predicts vast cosmic strings, maybe a gravitational wave detector like LIGO will be able to see them.

6. Unexpected weirdness:

In all likelihood, nothing visibly “quantum” happens at the event horizons of astrophysical black holes. If you think there’s something to see though, the Event Horizon Telescope might be able to see it. There’s a grab bag of other predictions like this: situations where we probably won’t see anything, but where at least one person thinks there’s a question worth asking.

 

I’ve probably left something out here, but this should give you a general idea. There is a lot that fundamental physics can learn from astronomy, from the overall structure and origins of the universe to unexplained phenomena like dark matter. But not everything in astronomy has these sorts of implications: for the most part, astronomy is interesting not because it tells us something about the fundamental laws of nature, but because it tells us how the vast space above us actually happens to work.

Visiting LBNL

I’ve been traveling this week, giving a talk at Lawrence Berkeley National Laboratory, so this will be a short post.

In my experience, most non-scientists don’t know about the national labs. In the US, the majority of scientists work for universities, but a substantial number work at one of the seventeen national labs overseen by the Department of Energy. It’s a good gig, if you can get it: no teaching duties, and a fair amount of freedom in what you research.

Each lab has its own focus, and its own culture. In the past I’ve spent a lot of time at SLAC, which runs a particle accelerator near Stanford (among other things). Visiting LBNL, I was amused by some of the differences. At SLAC, the guest rooms have ads for Stanford-branded bed covers. LBNL, meanwhile, brags about its beeswax-based toiletries in recyclable cardboard bottles. SLAC is flat, spread out, and fairly easy to navigate. LBNL is a maze of buildings arranged in tight terraces on a steep hill.

240px-rivendell_illustration

I forgot to take a picture, but someone appears to have drawn one.

While the differences were amusing, physicists are physicists everywhere. It was nice to share my work with people who mostly hadn’t heard about it before, and to get an impression of what they were working on.

Valentine’s Day Physics Poem 2017

It’s that time of year again! Valentine’s Day was this week, so to continue this blog’s tradition it’s time for me to post one of my physics poems. I wrote this back before I fully understood quantum field theory, so you’ll have to excuse any inaccuracies in the metaphor (at least on the physics side 😉 ).

 

Perturbation Theory II – Going in Loops

 

In order to interact, two particles must collide.

But a particle is a small thing, moving in its own circles, covering little space in its lonely life.

So we will never interact.

 

But particles emit bosons,

Tiny messengers of force,

Tendrils of interaction.

When these find us,

As they sometimes do,

We can interact.

 

But a boson is a small thing, moving in its own circles, covering little space in its lonely life.

So we will never interact.

 

But each boson has its own retinue,

Particles and their bosons in turn,

Spawned from its self-energy, uncertainty in its own nature,

Each, unobserved, with infinite possibilities.

 

And to compensate for these infinities

The charged nature of our naked selves

Must in turn be infinitely repressed.

 

So perhaps interaction would still be understandable

For those with simple repressions,

Matching constraints.

 

But we are not such people.

Complicated beings, we spin and twirl.

We hide our charge behind an infinity of possible terms,

So we can never know

If we will interact.

 

But perhaps we are not simply isolated points.

Perhaps we have extension,

Dimension,

Reach, beyond the confines of zero-dimensional selves.

And with that reach

Perhaps we can understand.

Perhaps

We can interact.

Boltzmann Brains, Evil Demons, and Why It’s Occasionally a Good Idea to Listen to Philosophers

There’s been a bit of a buzz recently about a paper Sean Carroll posted to the arXiv, “Why Boltzmann Brains Are Bad”. The argument in the paper isn’t new, it’s something Carroll has been arguing for a long time, and the arXiv post was just because he had been invited to contribute a piece to a book on Current Controversies in Philosophy of Science.

(By the way: in our field, invited papers and conference proceedings are almost always reviews of old work, not new results. If you see something on arXiv and want to know whether it’s actually new work, the “Comments:” section will almost always mention this.)

While the argument isn’t new, it is getting new attention. And since I don’t think I’ve said much about my objections to it, now seems like a good time to do so.

Carroll’s argument is based on theoretical beings called Boltzmann brains. The idea is that if you wait a very very long time in a sufficiently random (“high-entropy”) universe, the matter in that universe will arrange itself in pretty much every imaginable way, if only for a moment. In particular, it will eventually form a brain, or enough of a brain to have a conscious experience. Wait long enough, and you can find a momentary brain having any experience you want, with any (fake) memories you want. Long enough, and you can find a brain having the same experience you are having right now.

So, Carroll asks, how do you know you aren’t a Boltzmann brain? If the universe exists for long enough, most of the beings having your current experiences would be Boltzmann brains, not real humans. But if you really are a Boltzmann brain, then you can’t know anything about the universe at all: everything you think are your memories are just random fluctuations with no connection to the real world.

Carroll calls this sort of situation “cognitively unstable”. If you reason scientifically that the universe must be full of Boltzmann brains, then you can’t rule out that you could be a Boltzmann brain, and thus you shouldn’t accept your original reasoning.

The only way out, according to Carroll, is if we live in a universe that will never contain Boltzmann brains, for example one that won’t exist in its current form long enough to create them. So from a general concern about cognitive instability, Carroll argues for specific physics. And if that seems odd…well, it is.

For the purpose of this post, I’m going to take for granted the physics case: that a sufficiently old and random universe would indeed produce Boltzmann brains. That’s far from uncontroversial, and if you’re interested in that side of the argument (and have plenty of patience for tangents and Czech poop jokes) Lubos Motl posted about it recently.

Instead, I’d like to focus on the philosophical side of the argument.

Let’s start with intro philosophy, and talk about Descartes.

Descartes wanted to start philosophy from scratch by questioning everything he thought he knew. In one of his arguments, he asks the reader to imagine an evil demon.

315grazthrone

Probably Graz’zt. It’s usually Graz’zt.

Descartes imagines this evil demon exercising all its power to deceive. Perhaps it could confound your senses with illusions, or modify your memories. If such a demon existed, there would be no way to know if anything you believed or reasoned about the world was correct. So, Descartes asked, how do you know you’re not being deceived by an evil demon right now?

Amusingly, like Carroll, Descartes went on to use this uncertainty to argue for specific proposals in physics: in Descartes’ case, everything from the existence of a benevolent god to the idea that gravity was caused by a vortex of fluid around the sun.

Descartes wasn’t the last to propose this kind of uncertainty, and philosophers have asked more sophisticated questions over the years challenging the idea that it makes sense to reason from the past about the future at all.

Carroll is certainly aware of all of this. But I suspect he doesn’t quite appreciate the current opinion philosophers have on these sorts of puzzles.

The impression I’ve gotten from philosophers is that they don’t take this kind of “cognitive instability” very seriously anymore. There are specialists who still work on it, and it’s still of historical interest. But the majority of philosophers have moved on.

How did they move on? How have they dismissed these kinds of arguments?

That varies. Philosophers don’t tend to have the kind of consensus that physicists usually do.

Some reject them on pragmatic grounds: science works, even if we can’t “justify” it. Some use a similar argument to Carroll’s, but take it one step back, arguing that we shouldn’t worry that we could be deceived by an evil demon or be a Boltzmann brain because those worries by themselves are cognitively unstable. Some bite the bullet, that reasoning is impossible, then just ignore it and go on with their lives.

The common trait of all of these rejections, though? They don’t rely on physics.

Philosophers don’t argue “evil demons are impossible, therefore we can be sure we’re not deceived by evil demons”. They don’t argue “dreams are never completely realistic, so we can’t just be dreaming right now”.

And they certainly don’t try to argue the reverse: that consistency means there can never be evil demons, or never be realistic dreams.

I was on the debate team in high school. One popular tactic was called the “non-unique”. If your opponent argued that your plan had some negative consequences, you could argue that those consequences would happen regardless of whether you got to enact your plan or not: that the consequences were non-unique.

At this point, philosophers understand that cognitive instability and doubt are “non-unique”. No matter the physics, no matter how the world looks, it’s still possible to argue that reasoning isn’t justified, that even the logic we used to doubt the world in the first place could be flawed.

Carroll’s claim to me seems non-unique. Yes, in a universe that exists for a long time you could be a Boltzmann brain. But even if you don’t live in such a universe, you could still be a brain in a jar or a simulation. You could still be deceived by an “evil demon”.

And so regardless, you need the philosophers. Regardless, you need some argument that reasoning works, that you can ignore doubt. And once you’re happy with that argument, you don’t have to worry about Boltzmann brains.